Guillaume Chau

Vue.js 2 Web
Development
Projects

Learn Vue.js by building 6 web apps

LI Packb

Vue.js 2 Web Development
Projects

Learn Vue.js by building 6 web apps

Guillaume Chau

BIRMINGHAM - MUMBAI

Vue.js 2 Web Development Projects

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2017

Production reference: 2081217

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-746-3

www . packtpub.com

http://www.packtpub.com

Author
Guillaume Chau

Reviewer
Eduardo San Martin Morote

Commissioning Editor
Ashwin Nair

Acquisition Editor
Shweta Pant

Content Development Editor
Arun Nadar

Technical Editor
Diksha Wakode

Credits

Copy Editor
Dhanya Baburaj

Project Coordinator
Sheejal Shah

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Production Coordinator
Shantanu Zagade

About the Author

Guillaume Chau is the creator of integrations with Meteor (vue-meteor) and Apollo
GraphQL (vue-apollo) to help developers build highly interactive, real-time, Vue-powered
apps. He also created the official vue-curated app , which helps you to discover great
packages, and he contributes to the ecosystem with tools such as vue-virtual-scroller and
vue-supply. He built a customer portal app for a big energy company with large datasets
and performance challenges and is now working with an innovative French start-up
(WebRTC and real-time data).

First, I would like to thank my partner. With her constant support and love, I was able to
get through the huge amount of work required to write this book.

L would also like to thank my parents, my family and my friends for their support as well,
and also the other Vue.js Core Team, and more specifically Posva for his technical review of
the book, the Packt staff members I worked with, and my very cute black and white cat.

About the Reviewer

Eduardo San Martin Morote is a frontend developer who loves open source. He has been
contributing to open source since he started crafting applications. He mostly maintains
Vue js-related projects as Vue itself, vuefire, and vue-router. When he develops
applications, he likes to focus on UX, and always works in a pragmatic way. He tends to
reduce waste as much as possible by applying the lean methodology wherever he can. He
also trains people in web development, and is patient and adapts his teaching to different
levels.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at www.amazon.in/dp/178712746X.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.in/dp/178712746X
https://www.amazon.in/dp/178712746X

Table of Contents

Preface 1
Chapter 1: Getting Started with Vue 6
Why another frontend framework? 6
A trending project 7
Compatibility requirements 8
One-minute setup 8
Creating an app 9
Vue devtools 10
Templates make your DOM dynamic 12
Displaying text 12
Adding basic interactivity with directives 13
Summary 15
Chapter 2: Project 1 - Markdown Notebook 16
A basic note editor 17
Setting up the project 18
The note editor 19
The preview pane 20
Computed property 20

Text interpolation escaping 21
Displaying HTML 22

Saving the note 23
Watching changes 24

Using a method 27
Accessing the Vue instance 27
Loading the saved note 28
Lifecycle hooks 29
Initializing directly in the data 30
Multiple notes 31
The note list 31

A method to create a new note 32

Button and click events with v-on 33

Binding attributes with v-bind 34
Displaying a list with v-for 36
Selecting a note 38
The current note 39
Dynamic CSS classes 40

Table of Contents

Conditional templates with v-if 41

Saving the notes with the deep option 43

Saving the selection 45

The note toolbar with extras inside 46
Renaming the note 46

Deleting the note 48

Favorite notes 49

The status bar 52
Created date with a filter 53

Text stats 55
Summary 57
Chapter 3: Project 2 - Castle Duel Browser Game 58
Rules of the game 58
Setting up the project 62
The calm before the storm 63
The template option 63
The app state 63
The almighty components 66
Building the user interface 66
Our first component - the top bar 67
Adding some gameplay data to the state 67
Defining and using the components 68
Parent-to-child communication with Props 70

Props in our template 71
Displaying a card 72
Listening to native events on components 76
Child-to-parent communication with custom events 76

The hand 78
Animating the hand with transitions 81

A prettier animation 85

Playing a card 87
Animating the card list 88

The key special attribute 89

The CSS ftransitions 9

The overlays 92
Content distribution with slots 93

The 'player turn' overlay 95

The 'last play' overlay 96

The 'game over' overlay 96
Dynamic component 97

The overlay animation 100

Key attribute 100

The overlay background 101

[ii]

Table of Contents

Game world and scenery 101
The castles 102
Castle banners 103

Food and health bubbles 105
Banner bars 107
Animating a value 108

The animated clouds 110
The animation 112

Gameplay 114

Drawing cards 115
The initial hand 115

The hand 116
Playing a card 116

No cheating allowed 117
Removing the card from the hand 118

Waiting for the card transition to end 119
Applying the card effect 120

The next turn 121
New turn 121

Overlay close actions 123

Game Over! 124
Summary 124
Chapter 4: Advanced Project Setup 125

Setting up our development environment 125
Installing vue-cli, the official command-line tool 126
Code editors 126

Our first full-blown Vue application 126
Scaffolding the project 127
Creating the app 128

Running our application 129
Render functions 130
Configuring babel 131

Babel Vue preset 131

Polyfills 132
Updating the dependencies 132

Updating manually 133

Updating automatically 133

Updating Vue 134
Building for production 134

Single-File Components 134
Template 136

Using Pug 137

Table of Contents

Script 137
JSX 138

Style 139
Scoped styles 140

Adding preprocessors 141

Sass 142

Less 142

Stylus 143
Components inside components 143
Summary 146
Chapter 5: Project 3 - Support Center 147
General app structure 147
Setting up the project 148
Routing and pages 149
Vue plugins 149

Our first routes with vue—router 150

Layouts with router—view 150

Creating routes 152

The router object 154

Router modes 155

Creating a navigation menu 156

Router links 157

Active class 159

FAQ - Consuming an API 160
Server setup 160
Using fetch 161
Loading animation 165
Extending Vue with our own plugin 167
Creating a plugin 167

Plugin options 168

Fetch method 169
Reusing code with mixins 170
Fetching remote data 172

Loading management 174

Error management 175
Support tickets 177
User authentication 177
Storing the user in a centralized state 178

Another plugin 178

Login forms 179

Smart form 179

Form input component 182

Customizing v-model 187

Login component 187

[iv]

Table of Contents

Style children of scoped elements 192
Improving our fetch plugin 194

Sign up operation 195

Login operation 196

User menu 197
Logout method 197

Private routes with navigation guards 198
Route meta properties 199

Router navigation guards 200
Redirecting to the wanted route 202
Initializing user authentication 203
Guest routes 203
Displaying and adding tickets 204
Tickets list 204
Session expiration 206

Nested routes 208
Fixing our navigation guard 211

Sending a form 212
Form textarea 213

Binding attributes 214

User actions 215

Backup user input 216
Advanced routing features 219
Dynamic routes with parameters 220
Dynamic remote data 221

The dynamic route 223

Not found page 227
Transitions 228
Scrolling behavior 228
Summary 230
Chapter 6: Project 4 - Geolocated Blog 231
Google Auth and state management 232
Project setup 232
Creating the app 233
Some routing 235
State management with Vuex 237
Why do | need this? 237
The Vuex Store 239
The state is the source of truth 241
Mutations update the state 243
Strict mode 244
Time-travel debugging 245

Getters compute and return data 246
Actions for store operations 247
Mapping helpers 248

[v]

Table of Contents

User state

Setting up Google OAuth

Login button

User in the store
Adapting the router
Adapting the fetch plugin
Check the user session on start
The profile picture

Synchronizing the store and the router

Embedding Google Maps

Installation
Getting the API key
Installing the library
Adding a map
Connecting the BlogMap and the store
Vuex modules
Namespaced module
Accessing global elements
BlogMap module and component
Mutations
Actions
Mapping in the component
User position
Centering on the user
Blog posts and comments
Posts store module

Rendering functions and JSX

Writing the view in JavaScript with render functions
Dynamic templates
Data objects
Virtual DOM

What is JSX?

Blog content structure (in JSX!)

No content

Creating a post
Draft store actions
Blog Map changes
Click handler
Ghost marker
Post form
Making the request
Fetching posts
Store action
Fetch posts action
Action dispatching

250
250
252
254
255
256
256
257
258

258

258
258
259

260

261
261
262
264
264
264
265
265
266
267

268
268

270
270
271
272
275
276
277
280

280
280
281
282
283
284
287

288
288
288
290

[vil

Table of Contents

Displaying markers 291
Login and logout 292
Logout 293

Login 294
Selecting a post 295
Post details 295
Store changes for post selection and sending 295

Post Content component 296

Location info and scoped slots 298
Scoped slots to pass data to the parent 298
Implementing of the component 300
Comments - functional components 302
Store changes for comments 302
Functional component 303
Summary 307
Chapter 7: Project 5 - Online Shop and Scaling Up 308
Advanced development workflow 309
Setting up the project 310
Generating a quick development API 310
Launching the app 31
Auto-prefixing CSS with PostCSS 312
Targeting specific browsers with browserslist 313
Improving code quality and style with ESLint 314
Configuring ESLint 315
Customizing the rules 316

Running ESLint 316
ESLint inside Webpack 317
Unit testing with Jest 320
Configuring Jest 320
Babel configuration for Jest 321

Our first unit test 322
ESLint and Jest globals 323
Jest snapshots 324
Updating the snapshots 325
Complementary topics 326
Internationalization and code-splitting 326
Code-splitting with dynamic imports 327
Automatically loading the user locale 329
Changing Language page 331
Server-side rendering 332
Universal App Structure 333
Client entry 335

Server entry 336

State management 336

[vii]

Table of Contents

Restoring the Vuex state on the client 338

Webpack configuration 339

Client configuration 340

Server configuration 340

Server-side setup 341

Page template 342

Express server 342

Creating and updating the renderer 343

Rendering the Vue app 344

Running our SSR app 344
Unnecessary fetch 345

Production build 346
Additional configuration 346
Extracting the style into CSS files 346

Production express server 347

New npm scripts 348
Summary 350
Chapter 8: Project 6 - Real-time Dashboard with Meteor 351
Setting up the project 352
What is Meteor? 353
Installing Meteor 353
Creating the project 354
Ouir first Vue Meteor app 355
Routing 356
Production measures 358
Meteor collections integration 358
Setting up data 358
Adding a collection 358

Adding a Meteor method 359
Simulating measures 360
Inspecting the data 361
Dashboard and reporting 362
Progress bars library 362
Meteor publication 362
Creating the Dashboard component 363
Indicators 365

Listing the measures 367
Summary 369
Index 370

[viii]

Preface

Relatively new as a Ul library, Vue is a very serious challenger to current leading libraries
such as Angular and React. It has a lot to offer--it is simple, flexible, and very fast, yet it still
provides all the features necessary to build a full-blown modern web app.

Its progressive nature makes it easy to get started with, and then you can use more
advanced features to scale your app up. Vue also have a rich ecosystem surrounding it,
including official first-party libraries for routing and state management, bootstrapping, and
unit-testing. Vue even supports server-side rendering out of the box!

All this is possible thanks to an amazing community and an awesome core team that drive
innovation on the web and make Vue a sustainable open source project.

To help you learn Vue and build apps with it, this book is structured as a series of six
guides. Each guide is a concrete project, in which you will build a real application by
yourself. This means you will have six Vue apps up and running by the end!

Just like Vue, the projects are progressive and introduce new topics step by step to make
your learning experience easier. The first projects don't require extensive configuration or
build tools, so you can make concrete apps right away. Then, more advanced topics will be
progressively added to the project so that you will have a complete skill set by the end of
the book.

What this book covers

Chapter 1, Getting Started with Vue,covers how to create a basic Vue app with a dynamic
template and basic interactivity, thanks to directives.

Chapter 2, Project 1 - Markdown Notebook, explores the creation of a complete Vue app with
features such as computed properties, methods, life cycle hooks, list displays, DOM events,
dynamic CSS, template conditionals, and filter formatting.

Chapter 3, Project 2 - Castle Duel Browser Game, explains the creation of a browser card game
structured as a tree of reusable components that communicate with each other. It also
features animations and dynamic SVG graphics.

Preface

Chapter 4, Advanced Project Setup, focuses on how to use the official Vue command-line tool
to bootstrap a full blown project with webpack, babel, and more build tools. It also covers
the Single-File Component format, allowing readers to create components as building
blocks.

Chapter 5, Project 3 - Support Center, takes you through how to structure a multipage app
with the official routing library--nested routes, dynamic parameters, navigation guards, and
such. The project also features a custom user login system.

Chapter 6, Project 4 - Geolocated Blog, walks through the creation of an app featuring Google
OAuth login and the Google Maps API. This chapter also covers the important topic of state
management using the official VueX library, plus fast functional components.

Chapter 7, Project 5 - Online Shop and Scaling up, outlines advanced development techniques
such as checking code quality with ESLint, unit testing Vue components with Jest,
translating an app into multiple languages, and improving speed and SEO with server-side
rendering.

Chapter 8, Project 6 - Real-time Dashboard with Meteor, teaches you how to use Vue in a
Meteor app in order to take advantage of the real-time capabilities of this full-stack
framework.

What you need for this book

To follow this book, you will only need a text or code editor (Visual Studio Code and Atom
are recommended) and a web browser (preferably the latest version of Firefox or Chrome
for the development tools).

Who this book is for

If you are a web developer who now wants to create rich and interactive professional
applications using Vue.js, then this book is for you. Prior knowledge of JavaScript is
assumed. Familiarity with HTML, Node.js, and tools such as npm and webpack will be
helpful, but not necessary.

[2]

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text are shown as follows: "We can select HTML elements through the use of
the d3.select function."

A block of code is set as follows:

class Animal

{
public:
virtual void Speak (void) const //virtual in the base class

{
//Using the Mach 5 console print
M5DEBUG_PRINT ("...\n");

}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

[3]

Preface

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NS » =

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Vue-js-2-Web-Development-Projects. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!.

[4]

https://www.packtpub.com/books/info/packt/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/Vue-js-2-Web-Development-Projects
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/
downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[5]

https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Vuejs2WebDevelopmentProjects_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Getting Started with Vue

Vue (https://vuejs.org/) is a JavaScript library focused on building web user interfaces.
In this chapter, we will meet the library and after a brief introduction, we will start creating
a web app, laying the ground for the different projects we will build together in this book.

Why another frontend framework?

Vue is a relative newcomer in the JavaScript frontend landscape, but a very serious
challenger to the current leading libraries. It is simple, flexible, and very fast, while still
providing a lot of features and optional tools that can help you build a modern web app
efficiently. Its creator, Evan You, calls it the progressive framework:

¢ Vue is incrementally adoptable, with a core library focused on user interfaces that
you can use in existing projects

* You can make small prototypes all the way up to large and sophisticated web
applications

¢ Vue is approachable--the beginners can pick up the library easily, and the
confirmed developers can be productive very quickly

Vue roughly follows a Model-View-ViewModel architecture, which means the View (the
user interface) and the Model (the data) are separated, with the ViewModel (Vue) being a
mediator between the two. It handles the updates automatically and has been already
optimized for you. Therefore, you don't have to specify when a part of the View should
update because Vue will choose the right way and time to do so.

https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/

Getting Started with Vue Chapter 1

The library also takes inspiration from other similar libraries such as React, Angular, and
Polymer. The following is an overview of its core features:

¢ A reactive data system that can update your user interface automatically, with a
lightweight virtual-DOM engine and minimal optimization efforts, is required

e Flexible View declaration--artist-friendly HTML templates, JSX (HTML inside
JavaScript), or hyperscript render functions (pure JavaScript)

¢ Composable user interfaces with maintainable and reusable components

e Official companion libraries that come with routing, state management,

scaffolding, and more advanced features, making Vue a non-opinionated but
fully fleshed out frontend framework

A trending project

Evan You started working on the first prototype of Vue in 2013, while working at Google,
using Angular. The initial goal was to have all the cool features of Angular, such as data
binding and data-driven DOM, but without the extra concepts that make this framework
opinionated and heavy to learn and use.

The first public release was published on February 2014 and had immediate success the
very first day, with HackerNews frontpage, /r/javascript at the top spot and 10k unique
visits on the official website.

The first major version 1.0 was reached in October 2015, and by the end of that year, the
npm downloads rocketed to 382k ytd, the GitHub repository received 11k stars, the official
website had 363k unique visitors, and the popular PHP framework Laravel had picked Vue
as its official frontend library instead of React.

The second major version, 2.0, was released in September 2016, with a new virtual DOM-
based renderer and many new features such as server-side rendering and performance
improvements. This is the version we will use in this book. It is now one of the fastest
frontend libraries, outperforming even React according to a comparison refined with the
React team (https://vuejs.org/v2/guide/comparison). At the time of writing this book,
Vue was the second most popular frontend library on GitHub with 72k stars, just behind
Reactarmiahead(ﬁz%ngularl(https://github.com/showcases/front—end—javascript—

frameworks).

[7]

https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://vuejs.org/v2/guide/comparison
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks
https://github.com/showcases/front-end-javascript-frameworks

Getting Started with Vue Chapter 1

The next evolution of the library on the roadmap includes more integration with Vue-native
libraries such as Weex and NativeScript to create native mobile apps with Vue, plus new
features and improvements.

Today, Vue is used by many companies such as Microsoft, Adobe, Alibaba, Baidu, Xiaomi,
Expedia, Nintendo, and GitLab.

Compatibility requirements

Vue doesn't have any dependency and can be used in any ECMAScript 5 minimum-
compliant browser. This means that it is not compatible with Internet Explorer 8 or less,
because it needs relatively new JavaScript features such as Object .defineProperty,
which can't be polyfilled on older browsers.

In this book, we are writing code in JavaScript version ES2015 (formerly ES6), so for the first
few chapters, you will need a modern browser to run the examples (such as Edge, Firefox,
or Chrome). At some point, we will introduce a compiler called Babel that will help us make
our code compatible with older browsers.

One-minute setup

Without further ado, let's start creating our first Vue app with a very quick setup. Vue is
flexible enough to be included in any web page with a simple script tag. Let's create a
very simple web page that includes the library, with a simple div element and another
script tag:

<html>
<head>
<meta charset="utf-8">
<title>Vue Project Guide setup</title>
</head>
<body>

<!-— Include the library in the page —-->
<script src="https://unpkg.com/vue/dist/vue.js"></script>

<!-— Some HTML -->
<div id="root">

<p>Is this an Hello world?</p>
</div>

[8]

Getting Started with Vue Chapter 1

<!-- Some JavaScript --—>

<script>

console.log('Yes! We are using Vue version', Vue.version)
</script>

</body>
</html>

In the browser console, we should have something like this:

Yes! We are using Vue version 2.0.3

As you can see in the preceding code, the library exposes a Vue object that contains all the
features we need to use it. We are now ready to go.

Creating an app

For now, we don't have any Vue app running on our web page. The whole library is based
on Vue instances, which are the mediators between your View and your data. So, we need
to create a new Vue instance to start our app:

// New Vue instance
var app = new Vue ({
// CSS selector of the root DOM element
el: '#root',
// Some data
data () {
return A
message: 'Hello Vue.js!',
}
b
})

The Vue constructor is called with the new keyword to create a new instance. It has one
argument--the option object. It can have multiple attributes (called options), which we will
discover progressively in the following chapters. For now, we are using only two of them.

With the el option, we tell Vue where to add (or "mount") the instance on our web page
using a CSS selector. In the example, our instance will use the <div id="root">DOM
element as its root element. We could also use the $mount method of the Vue instance
instead of the el option:

var app = new Vue ({
data () {

[9]

Getting Started with Vue Chapter 1

return {
message: 'Hello Vue.js!',
}
}I
})
// We add the instance to the page
app. $mount ('#root')

Most of the special methods and attributes of a Vue instance start with a
dollar character.

We will also initialize some data in the data option with a message property that contains
a string. Now the Vue app is running, but it doesn't do much, yet.

You can add as many Vue apps as you like on a single web page. Just
create a new Vue instance for each of them and mount them on different
DOM elements. This comes in handy when you want to integrate Vue in
an existing project.

Vue devtools

An official debugger tool for Vue is available on Chrome as an extension called Vue.js
devtools. It can help you see how your app is running to help you debug your code. You
can download it from the Chrome Web Store (https://chrome.google.com/webstore/
search/vue) or from the Firefox addons registry (https://addons.mozilla.org/en-US/
firefox/addon/vue-js-devtools/?src=ss).

For the Chrome version, you need to set an additional setting. In the extension settings,
enable Allow access to file URLSs so that it can detect Vue on a web page opened from your
local drive:

v Vue.js devtools 2.2.0 | Enabled]
Chrome devtools extension for debugging Vue s applications

Details

Allow in incognito W] Allow access to file URLs

[10]

https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://chrome.google.com/webstore/search/vue
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss
https://addons.mozilla.org/en-US/firefox/addon/vue-js-devtools/?src=ss

Getting Started with Vue Chapter 1

On your web page, open the Chrome Dev Tools with the F12 shortcut (or Shift + command +
c on OS X) and search for the Vue tab (it may be hidden in the More tools... dropdown).
Once it is opened, you can see a tree with our Vue instance named Root by convention. If
you click on it, the sidebar displays the properties of the instance:

[w ﬂ Elements Conscle Wue Sources Metwork Timeline Profiles Application : X

v Instance selected: Root A, Components £ Vuex £ 1 Refresh

Q
Root @ Inspect DOM

message: “Hello Vue.js!"®

You can drag and drop the devtools tab to your liking. Don't hesitate to
place it among the first tabs, as it will be hidden in the page where Vue is
not in development mode or is not running at all.

You can change the name of your instance with the name option:

var app = new Vue ({
name: 'MyApp',
//

})

[11]

Getting Started with Vue Chapter 1

This will help you see where your instance in the devtools is when you will have many
more:

[w ﬂ Elements Consele Wue Sources Metwork Timeline Profiles Application E 4

v nstance selected: MyApp X Components £1) vuex £+ Refresh

.
e

<MyApp> == $wme
MyApp = @ Inspect bou

message: "Hello Vue.js!"®

Templates make your DOM dynamic

With Vue, we have several systems at our disposal to write our View. For now, we will start
with templates. A template is the easiest way to describe a View because it looks like HTML
a lot, but with some extra syntax to make the DOM dynamically update very easily.

Displaying text
The first template feature we will see is the text interpolation, which is used to display
dynamic text inside our web page. The text interpolation syntax is a pair of double curly
braces containing a JavaScript expression of any kind. Its result will replace the
interpolation when Vue will process the template. Replace the <div id="root"> element
with the following:

<div id="root">

<p>{{ message }}</p>
</div>

[12]

Getting Started with Vue Chapter 1

The template in this example has a <p> element whose content is the result of the message
JavaScript expression. It will return the value of the message attribute of our instance. You
should now have a new text displayed on your web page--Hello Vue.js!. It doesn't seem
like much, but Vue has done a lot of work for us here--we now have the DOM wired with
our data.

To demonstrate this, open your browser console and change the app .message value and
press Enter on the keyboard:

app.message = 'Awesome!'

The message has changed. This is called data-binding. It means that Vue is able to
automatically update the DOM whenever your data changes without requiring anything
from your part. The library includes a very powerful and efficient reactivity system that
keeps track of all your data and is able to update what's needed when something changes.
All of this is very fast indeed.

Adding basic interactivity with directives

Let's add some interactivity to our otherwise quite static app, for example, a text input that
will allow the user to change the message displayed. We can do that in templates with
special HTML attributes called directives.

All the directives in Vue start with v— and follow the kebab-case syntax.
That means you should separate the words with a dash. Remember that
HTML attributes are case insensitive (whether they are uppercase or
lowercase doesn't matter).

The directive we need here is v—-model, which will bind the value of our <input> element
with our message data property. Add a new <input> element with the v-
model="message" attribute inside the template:

<div id="root">
<p>{{ message }}</p>

<!-- New text input -->
<input v-model="message" />
</div>

[13]

Getting Started with Vue Chapter 1

Vue will now update the message property automatically when the input value changes.
You can play with the content of the input to verify that the text updates as you type and
the value in the devtools changes:

WVue 15 awesome!

Vue is awesomel

[w ﬂ Elements Consele Wue Sources Metwork Timeline Profiles Application : X

v Instance selected: MyApp A Components £19) vuex ¥+ Refresh

<MyApp> == $wme
MyApD - @ Inspect boM

message: "Vue is awesome!"

There are many more directives available in Vue, and you can even create your own. Don't
worry, we will cover that in later chapters.

[14]

Getting Started with Vue Chapter 1

Summary

In this chapter, we quickly set up a web page to get started using Vue and wrote a simple
app. We created a Vue instance to mount the Vue app on the page and wrote a template to
make the DOM dynamic. Inside this template, we used a JavaScript expression to display
text, thanks to text interpolations. Finally, we added some interactivity with an input
element that we bound to our data with the v-mode1l directive.

In the next chapter, we will create our first real web app with Vue--a markdown notebook.
We will need more Vue superpowers to turn the development of this app into a fun and
swift experience.

[15]

Project 1 - Markdown Notebook

The first app we will create is a markdown notebook, using several Vue features in a step-
by-step manner. We will reuse what we saw in Chapter 1, Getting Started with Vue, and add
more elements on top of it, such as useful directives, events for user interaction, more
instance options, and filters to process values.

Before we start writing the code, let's talk about the app and review our objectives:

¢ The notebook app will allow the user to write notes in markdown
¢ The markdown will be previewed in real time

¢ The users will be able to add as many notes as they want

¢ The notes will be restored the next time the user visits the app

To do that, we will divide the user interface into three sections:

e A main section in the middle with the note editor
¢ A right pane, which previews the markdown of the current node
¢ A left pane, with the list of notes and a button to add a new one

Project 1 - Markdown Notebook Chapter 2

Here is what it will look like at the end of the chapter:

Guillaume CHAU

[Motebook
&« C | ® filey///Dv/Mes%20documents/GitHub/packt-vue-project-guide/chapter2-fullfindex.html g
=+ Add note Test note ﬂ Hi! This notebook is using markdown for formatting!

. **Hil** This notebook is using [markdown]
On Vuejs * (https://github.com/adam-p/markdown-
here/wiki/Markdown-Cheatsheet) for formatting!

Things I need to learn Y
Friends birthdays

Cookie recipes

What does 42 mean
anyway?

27/12/116, 00:11 1 8 123

A basic note editor

We will start small with a very simple markdown note app that only displays a text editor
on the left and a markdown preview on the right. Then, we will turn it into a full notebook
with multiple note support.

[17]

Project 1 - Markdown Notebook Chapter 2

Setting up the project
For this project, we will have a few files ready to get us started:

1. First, download simple-notebook project files and extract them in the same folder.
Open the index.html file and add a div element with the notebook ID and a
nested section element with the main class. You should have the following
content inside the file:

<html>
<head>
<title>Notebook</title>
<!-— Icons & Stylesheets —--—>
<link href="https://fonts.googleapis.com/icon?
family=Material+Icons" rel="stylesheet">
<link rel="stylesheet" href="style.css" />
</head>
<body>
<!-- Include the library in the page —-->
<script src="https://unpkg.com/vue/dist/vue.js"></script>

<!—— Notebook app —-—>
<div id="notebook">

<!-- Main pane —-->
<section class="main">

</section>
</div>
<!-- Some JavaScript -->
<script src="script.js"></script>
</body>
</html>

[18]

Project 1 - Markdown Notebook Chapter 2

2. Now, open the script. js file to add some JavaScript. Just like you did in
Chapter 1, Getting Started with Vue, create a Vue instance mounted on the
#notebook element with a Vue constructor:

// New VuedJS instance
new Vue ({

// CSS selector of the root DOM element
el: '#notebook',
)

3. Then, add a data property called content that will hold the content of your note:

new Vue ({
el: '#notebook',

// Some data
data () {
return
content: 'This is a note.',
}
}I
)

Now you are ready to create your first real Vue app.

The note editor

Now that we have our app running, let's add the text editor. We will use a simple

textarea element and the v-model directive we saw in Chapter 1, Getting Started with
Vue.

Create a section element and put the textarea inside, then add the v-mode1l directive
bound to our content property:

<!-- Main pane -->
<section class="main">

<textarea v-model="content"></textarea>
</section>

Now, if you change the text ;inside the note editor, the value of content should
automatically chance in the devtools.

[19]

Project 1 - Markdown Notebook Chapter 2

The v-model directive is not limited to text inputs. You can also use it in
other form elements, such as checkboxes, radio buttons, or even custom
components, as we will see later in the book.

The preview pane

To compile the note markdown into valid HTML, we will need an additional library called
Bﬂarked(https://www.npmjs.com/package/markedﬁ

1. Include the library in the page just after the script tag referencing Vue:

<!—— Include the library in the page —-->
<script src="https://unpkg.com/vue/dist/vue.js"></script>
<!-— Add the marked library: —-->

<script src="https://unpkg.com/marked"></script>

marked is very easy to use--just call it with the markdown text, and it will return
the corresponding HTML.

2. Try the library with some markdown text:

const html = marked('**Bold** *Italic* [link]
(http://vuejs.org/)")
console.log (html)

You should have the following output in the browser console:

<p>Bold Italic
link</p>

Computed property

A very powerful feature of Vue is the computed property. It allows us to define new
properties that combine any amount of properties and use transformations, such as
converting a markdown string into HTML--that's why its value is defined by a function. A
computed property has the following features:

¢ The value is cached so that the function doesn't rerun if it's not necessary,
preventing useless computation

e It is automatically updated as needed when a property used inside the function
has changed

[20]

https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked
https://www.npmjs.com/package/marked

Project 1 - Markdown Notebook Chapter 2

e A computed property can be used exactly like any property (and you can use
computed properties inside other computed properties)

e It is not computed until it is really used somewhere in the app

This will help us automatically convert the note markdown into valid HTML, so we can
display a preview in real time. We just need to declare our computed property in the
computed option:

// Computed properties
computed: {
notePreview () |
// Markdown rendered to HTML
return marked (this.content)
b
b

Text interpolation escaping

Let's try to display our note in a new pane using a text interpolation:

1. Create an <aside> element with the preview class, which displays our
notePreview computed property:

<!-- Preview pane -—>
<aside class="preview">

{{ notePreview }}
</aside>

We should now have the preview pane displaying our note on the right side of
the app. If you type some text in the note editor, you should see the preview
updating automatically. However, there is an issue with our app, which arises
when you use markdown formatting.

2. Try making your text bold by surrounding it with **, as follows:
I'm in **bold**!

Our computed property should return this in valid HTML, and we should have
some bold text rendered in our preview pane. Instead, we can see the following:

I'm in bold!

[21]

Project 1 - Markdown Notebook Chapter 2

We have just discovered that the text interpolation automatically escapes the HTML tags.
This is to prevent injection attacks and improve the security of our app. Fortunately, there is
a way to display some HTML, as we will see in a moment. However, this forces you to
think about using it to include potentially harmful dynamic content.

For example, you create a comment system, where any user can write some text to comment
on your app pages. What if someone writes some HTML in their comment, which is then
displayed in the page as valid HTML? They could add some malicious JavaScript code, and
all the visitors of your app would be vulnerable. It's called a cross-site scripting attack, or an
XSS attack. That's why text interpolation always escapes HTML tags.

It is not recommended to use v-html on content created by the users of
the application. They could write malicious JavaScript code inside a
<script> tag that would be executed. However, with normal text
interpolation, you would be safe because the HTML would not be
executed.

Displaying HTML

Now that we know that text interpolations can't render HTML for security reasons, we will
need another way to render dynamic HTML--the v-html directive. Like the v-model
directive we saw in Chapter 1, Getting Started with Vue, this is a special attribute that adds a
new feature to our template. This one is able to render any valid HTML string into our app.
Just pass the string as the value, as follows:

<!-- Preview pane ——>
<aside class="preview" v-html="notePreview">
</aside>

Now, the markdown preview should work correctly, and the HTML is dynamically
inserted in our page.

Any content inside our aside element will be replaced by the value of the
v-html directive. You can use this to put placeholder contents inside.

[22]

Project 1 - Markdown Notebook Chapter 2

Here is the result you should have:

Guillaume CHAU

[Motebook

&« C | @ file:///D/Mes%20documents/GitHub/packt-vue-project-guide/chapter2-simple/index.html x4

¥, -t 1 & kd EE N
Ou can write an Trmarkdouwn You can write in markdown

There is an equivalent directive for text interpolation, v-text, which
behaves like v-html, but escapes the HTML tags just like classic text
interpolations.

Saving the note

For now, if you close or refresh the app, your note will be lost. It would be a good idea to
save and load it the next time we open the app. To achieve this, we will use the standard
localStorage API provided by most browsers.

[23]

Project 1 - Markdown Notebook Chapter 2

Watching changes

We would like to save our note as soon as its content changes. That's why we need
something that is called when our content data property changes, such as watchers. Let's
add some watchers to our application!

1. Add a new watch option to the Vue instance.

This option is a dictionary with the keys being the name of the watched properties
and the value being a watching option object. This object has to have a handler
property, which is either a function or the name of a method. The handler will
receive two arguments--the new value and the old value of the property being
watched.

Here is an example with a simple handler:

new Vue ({

/7

// Change watchers
watch: {
// Watching 'content' data property
content: {
handler (val, oldval) {
console.log('new note:', wval, 'old note:', oldval)
}I
}I
}I
})

Now, when you type in the note editor, you should get the following message in
the browser console:

new note: This is a **note**! old note: This is a **note**
This will be very helpful in saving the note whenever it changes.
There are two other options you can use alongside handler:

¢ deep is a Boolean that tells Vue to watch for changes recursively inside nested
objects. This is not useful here, as we only watch a string.

e immediate is also a Boolean that forces the handler to be called immediately
instead of waiting for the first change. In our case, this will not have a meaningful
impact, but we can try it to note its effects.

[24]

Project 1 - Markdown Notebook Chapter 2

The default value of these options is false, so if you don't need them, you
can skip them entirely.

2. Add the immediate option to the watcher:

content: {
handler (val, oldval) {
console.log('new note:', wval, 'old note:', oldval)

Fy
immediate: true,

by

As soon as you refresh the app, you should see the following message pop up in
the browser console:

new note: This is a **note** old note: undefined

Unsurprisingly, the old value of the note was unde fined, because the watcher
handler was called when the instance was created.

3. We don't really need this option here, so go ahead and delete it:

content: {
handler (val, oldval) {
console.log('new note:', val, 'old note:', oldval)
}!
}!

Since we are not using any option, we can use a shorter syntax by skipping the
object containing the handler option:

content (val, oldval) {
console.log('new note:', val, 'old note:', oldval)

Hy

This is the most common syntax for watchers when you don't need other
options, such as deep or immediate.

[25]

Project 1 - Markdown Notebook Chapter 2

4. Let's save our note. Use the 1ocalStorage.setItem() API to store the note
content:

content (val, oldval) {
console.log('new note:', val, 'old note:', oldval)
localStorage.setItem('content', wval)

I

To check whether this worked, edit the note and open the browser devtools in the
Application or Storage tab (depending on your browser) you should find a new entry
under the Local Storage section:

Guillaume CHAU

[Motebook

& [¢RNO] file:///D:/Mes%20documents/GitHub/packt-vue-project-guide/chapter2-simple/index.html g

v ite in **markdown** o
o ean wrate in Trmarkdown You can write in markdown

[w ﬂ Elements Conscle Wue Sources Network Timeline Profiles Application Security Audits Adblock Plus Pox
= | Key Value
Application You can write in **markdown™**
B Manifest

¢ Service Workers

W Clear storage

Session Storage

exedDB

£ WebsalL

» & Cookies

Cache
£ Cache Storage

EE Application Cache

Frames
» M ton

Consale x

[26]

Project 1 - Markdown Notebook Chapter 2

Using a method
There is a good coding principle that says Don’t Repeat Yourself, and we really should follow
it. That's why we can write some logic in reusable functions called methods. Let's move our
saving logic into one:
1. Add anew methods option to the Vue instance and use the 1ocalStorage API
there:

new Vue ({

//

methods: {
saveNote (val) {
console.log('saving note:', wval)
localStorage.setItem('content', wval)
}!
}!
})

2. We can now use the method name in the handler option of our watcher:

watch: {
content: {
handler: 'saveNote',

by
by

Alternatively, we can use it with the shorter syntax:

watch: {
content: 'saveNote',

by

Accessing the Vue instance
Inside the methods, we can access the Vue instance with the this keyword. For example,
we could call another method:

methods: {
saveNote (val) {
console.log('saving note:', val)

localStorage.setItem('content', wval)
this.reportOperation('saving"')

b

[27]

Project 1 - Markdown Notebook Chapter 2

reportOperation (opName) {
console.log('The', opName, 'operation was completed!')

by
by

Here, the saveNote method will be called from the content Changed method.

We can also access the other properties and special functions of our Vue instance through
this. We could remove the saveNote argument and access the content data property

directly:
methods: {
saveNote () |
console.log('saving note:', this.content)
localStorage.setItem('content', this.content)

b
b

This also works in the watcher handler we created in the Watching changes section:

watch: {
content (val, oldval) {
console.log('new note:', wval, 'old note:', oldval)

console.log('saving note:', this.content)
localStorage.setItem('content', this.content)

by
by

Basically, you can access the Vue instance with this in any function
bound to it: methods, handlers, and other hooks.

Loading the saved note

Now that we save the note content each time it changes, we will need to restore it when the
app is reopened. We will use the localStorage.getItem() API for that. Add the

following line at the end of your JavaScript file:

console.log('restored note:', localStorage.getItem('content'))

[28]

Project 1 - Markdown Notebook Chapter 2

When you refresh your app, you should see the saved note content printed in the browser
console.

Lifecycle hooks

The first way that comes to mind to restore our note content into the Vue instance is to set
the content data property when the instance is created.

Each Vue instance follows a precise lifecycle with several steps--it will be created, mounted
on the page, updated, and finally, destroyed. For example, during the creating step, Vue
will make the instance data reactive.

Hooks are a specific set of functions that are automatically called at some
point in time. They allow us to customize the logic of the framework. For
example, we can call a method when a Vue instance is created.

We have multiple hooks at our disposal to execute logic when, or just before, each of these
steps occurs:

e beforeCreate: This is called when the Vue instance object is created (for
example, with new Vue ({})), but before Vue has done anything with it.

e created: This is called after the instance is ready and fully operating. Note that,
at this point, the instance is not in the DOM yet.

¢ beforeMount: This is called just before the instance is added (or mounted) on the
web page.

e mounted: This is called when the instance is on the page and visible in the DOM.

e beforeUpdate: This is called when the instance needs to be updated (generally,
when a data or computed property has changed).

e updated: This is called after the data changes are applied to the template. Note
that the DOM may not be up to date yet.

® beforeDestroy: This is called just before the instance is torn down.
e destroyed: This is called when the instance is fully removed.

[29]

Project 1 - Markdown Notebook Chapter 2

For now, we will only use the created hook to restore the note content. To add a lifecycle
hook, just add a function with the corresponding name into the Vue instance options:

new Vue ({

//

// This will be called when the instance is ready
created () {
// Set the content to the stored value
// or to a default string if nothing was saved
this.content = localStorage.getItem('content') || 'You can write in
markdown"'
}I
})

Now, when you refresh the app, the ;created hook will be automatically called when the
instance is created. This will set the content data property value to the result of the
restoration or to 'You can write in **markdown**' if the result was falsy, in case we
didn't have anything saved before.

In JavaScript, a value is falsy when equal to false, 0, an empty string,
null, undefined, or NaN (not a number). Here, the
localStorage.getItem() function will return null if the
corresponding key doesn't exist in the browser local storage data.

The watcher we set up is also called, so the note is saved, and you should see something
similar to this in the browser console:

new note: You can write in **markdown** old note: This is a note
saving note: You can write in **markdown**
The saving operation was completed!

We can see that when the created hook is called, Vue has already set the data properties and
their initial values (here, This is a note).

Initializing directly in the data

The other way is to initialize the content data property with the restored value directly:

new Vue ({
//
data () {
return {
content: localStorage.getItem('content') || 'You can write in
markdown',

[30]

Project 1 - Markdown Notebook Chapter 2

}
by

/7
H)

With the preceding code, the watcher handler will not be called because we initialize the
content value instead of changing it.

Multiple notes

A notebook with only one note is not that useful, so let's turn it into a multiple note one. We
will add a new side panel on the left with the list of notes, plus a few extra elements, such as
a text field to rename the notes and a favorite toggle button.

The note list

We will now lay the groundwork for the side pane containing the list of notes:
1. Add anew aside element with the side-bar class before the main section:

<!—— Notebook app -—>
<div id="notebook">

<!—— Sidebar -->
<aside class="side-bar">
<!—— Here will be the note list —-—>
</aside>
<!-- Main pane -->

<section class="main">

2. Add a new data property called notes--it will be the array containing all of our
notes:

data () {
return A
content:
// New! A note array
notes: [],

by

[31]

Project 1 - Markdown Notebook Chapter 2

A method to create a new note

Each of our notes will be an object with the following data:

e id: This will be the note unique identifier

e title: This ;will contain the name of the note displayed in the list
e content: This ;will be the note markdown content

e created: This ;will be the date the note was created

e favorite: This ;will be a Boolean that allows for marking a note that will be
displayed at the top of the list as favorite

Let's add a method that will create a new note and call it addNote, which will create a new
note object with a default value:

methods:{
// Add a note with some default content and select it
addNote () {
const time = Date.now()
// Default new note
const note = {

id: String(time),
title: 'New note ' + (this.notes.length + 1),
content: '**Hi!** This notebook is using
[markdown] (https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
) for formatting!',
created: time,
favorite: false,
}
// Add to the list
this.notes.push (note)
}I
}

We take the current time (which means the number of milliseconds elapsed since 1 January
1970 00:00:00 UTC), which will be a perfect way to have a unique identifier on each note.
We also set default values, such as a title and some content, plus the created date and the
favorite ;Boolean. Finally, we add the note to the notes array property.

[32]

Project 1 - Markdown Notebook Chapter 2

Button and click events with v-on

Now, we will need a button to call this method. Create a new button element inside a div
element with the toolbar class:

<aside class="side-bar">

<!-- Toolbar —-->
<div class="toolbar">
<!-— Add note button —-->
<button><i class="material-icons">add</i> Add note</button>
</div>
</aside>

To call the addNote method when the user clicks on the button, we will need a new
directive--v-on. The value will be the function called when the event is caught, but it also
expects an argument to know which event to listen to. However, how do we pass the
argument to the directive, you might ask? It's quite simple! Add a : character after the
directive name, followed by the argument. Here is an example:

<button v-directive:argument="value">

In our case, we are using the v—on directive with the event name as the argument, and more
specifically, the c1ick event. It should look like this:

<button v-on:click="callback">

Our button should call the addNote method when it is clicked on, so go ahead and modify
the button we added earlier:

<button wv-on:click="addNote"><i class="material-icons">add</i> Add
note</button>

There is an optional special shortcut for the v-on directive--the @ character that allows you
to rewrite the preceding ;code to the following:

<button @click="addNote"><i class="material-icons">add</i> Add
note</button>

Now that our button is ready, try adding a few notes. We don't see them in the app yet, but
you can open the devtools and note the note list change:

[33]

Project 1 - Markdown Notebook Chapter 2

Guillaume CHAU [m]
[% Notebook x WY
&« C | @® file:///D/Mes%20documents/GitHub/packt-vue-project-guide/chapter2-full/index.html g
~+ Add note
[w E Elements Console Vue Sources MNetwork Timeline Profiles Application Security Audits Adblock Plus a1 PoX
v Instance selected: Motebook A, Compenents 410 vuex 4+ Refresh
<Notebook> == $umd
Notebook @ Inspect DOM
¥ notes: Array[6]
¥ @: Object
content: "#*¢Hi!** This notebook is using [markdown](https://github.com/adam-
created: 1482791201643
favorite: 1
id: "1482791891643"
title: "On Vue.js"
» 1: Object
» 2: Object
b 3: Object
Console x

Binding attributes with v-bind

It would be helpful if a tooltip showed the number of notes we already had on the "Add
note" button, wouldn't it? At least we can introduce another useful directive!

The tooltips are added with the title HTML attribute. Here is an example:

<button title="3 note(s) already">

Here, it is only a static text, though, and we would like to make it dynamic. Thankfully,
there is a directive that allows us to bind a JavaScript expression to an attribute--v-bind.
Like the v-on directive, it expects an argument, which is the name of the target attribute.

We can rewrite the preceding example with a JavaScript expression as follows:

<button wv-bind:title="notes.length + ' note(s) already'">

[34]

Project 1 - Markdown Notebook Chapter 2

Now, if you leave the mouse cursor over the button, you will get the number of notes:

[MNotebook x

“ C | @ file///Dy/Mes%20documents/GitHuby,

| & note(s) already i

Like the v-on directive, v-bind has a special shortcut syntax (both are the most used
directives)--you can just skip the v-bind part and only put the : character with the
attribute name. The example would look like this:

<button :title="notes.length + ' note(s) already'">

JavaScript expressions bound with v-bind will re-evaluate automatically
when needed and update the value of the corresponding attribute.

We could also move the expression to a computed property and use it instead. The
computed property could be as follows:

computed: {

addButtonTitle () {
return notes.length + ' note(s) already'
}!
}!

[35]

Project 1 - Markdown Notebook Chapter 2

Then, we would rewrite the bound attribute, as follows:

<button :title="addButtonTitle">

Displaying a list with v-for
We will now display the list of notes below the toolbar.

1. Just below the toolbar, add a new div element with the ;notes class:

<aside class="side-bar">
<div class="toolbar">
<button Qclick="addNote"><i class="material-icons">add</i>
Add note</button>

</div>
<div class="notes">
<!-— Note list here —--—>
</div>
</aside>

Now, we want to display a list of multiple div elements, one for each note. To
achieve this, we need the v-for directive. It takes a special expression as the
value, in the form of item of items, that will iterate over the items array or
object and expose an item value for this part of the template. Here is an example:

<div v—-for="item of items">{{ item.title }}</div>

You can also use the in keyword instead of of:

<div v-for="item in items">{{ item.title }}</div>

Imagine that we have the following array:

data () {
return {
items: [
{ title: 'Item 1' },
{ title: 'Item 2' },
{ title: 'Item 3' },

[36]

Project 1 - Markdown Notebook Chapter 2

The final rendered DOM will look like this:

<div>Item 1</div>
<div>Item 2</div>
<div>Item 3</div>

As you can see, the element on which you put the v-for directive is
repeated in the DOM.

2. Let's go back to our notebook and display the notes in the side pane. We store
them in the notes data property, so we need to iterate over it:

<div class="notes">

<div class="note" v—-for="note of notes">{{note.title}}</div>
</div>

We should now have the notes list displayed below the button:

[Notebook x

&« C | @ filey///D:/Mes%20documents/GitHub/packt-vue-project

~+ Add note

New note 1
New note 2
New note 3
New note 4

New note 5

[371]

Project 1 - Markdown Notebook Chapter 2

Add a few more notes using the button, and you should see that the list is updating
automatically!

Selecting a note

When a note is selected, it becomes the context of the middle and right panes of the app--the
text editor modifies its content, and the preview pane displays its formatted markdown.
Let's implement this behavior!

1. Add a new data property called selectedId that will hold the ID of the selected

note:
data () {
return {
content: localStorage.getItem('content') || 'You can write in
markdown"',
notes: [],

// Id of the selected note
selectedId: null,
}
}I

We could have created a selectedNote property instead, holding the
note object, but it would have made the saving logic more complex, with
no benefit.

2. We need a new method that will be called when we click on a note in the list to
select ID. Let's call it selectNote:

methods: {

selectNote (note) {
this.selectedId =
}I
}

note.id

[38]

Project 1 - Markdown Notebook Chapter 2

3. Like we did for the add note button, we will listen for the c1ick event with the
v-on directive on each note item in the list:

<div class="notes">
<div class="note" v-for="note of notes"
@click="selectNote (note) ">{{note.title}}</div>
</div>

Now, you should see the ;updated selectedld data property when you click on a note.

The current note

Now that we know which note is currently selected, we can replace the old content data
property we created at the beginning. It would be very useful to have a computed property
to easily access the selected note, so we will create one now:

1. Add a new computed property called selectedNote that returns the note with
an ID that matches our selectedId property:

computed: {
selectedNote () {
// We return the matching note with selectedId

return this.notes.find(note => note.id === this.selectedId)

iy

note => note.id === this.selectedId is an arrow function from
the ES2015 JavaScript version. Here, it takes a note argument and returns
the result of the note.id === this.selectedId expression.

We need to replace the old content data property with selectedNote.content
in our code.

2. Start by modifying the editor in the template:

<textarea v-model="selectedNote.content"></textarea>

[39]

Project 1 - Markdown Notebook Chapter 2

3. Then, change the notePreview computed property to now use selectedNote:

notePreview () {
// Markdown rendered to HTML
return this.selectedNote ? marked (this.selectedNote.content)

}I

Now, the text editor and the preview pane will display the selected note when you click on
it in the list.

You can safely remove the content data property, its watcher, and the saveNote method,
which are no longer used in the app.

Dynamic CSS classes

It would be nice to add a selected CSS class when a note is the selected one in the note list
(for example, to display a different background color). Thankfully, Vue has a very useful
trick to help us achieve this--the v-bind directive (the : character being its shorthand) has
some magic to make the manipulation of CSS classes easier. Instead of passing a string, you
can pass an array of strings:

<div :class="['one', 'two', 'three']">
We will get the following in the DOM:

<div class="one two three">

However, the most interesting feature is that you can pass an object whose keys are the
class names and whose values are Booleans that determine whether or not each class should
be applied. Here is an example:

<div :class="{ one: true, two: false, three: true }">
This object notation will produce the following HTML:

<div class="one three">

In our case, we want to apply the selected class only if the note is the selected one. So, we
will simply write as follows:

<div :class="{ selected: note === selectedNote }">

[40]

Project 1 - Markdown Notebook Chapter 2

The note list should now look like this:

<div class="notes">
<div class="note" v-for="note of notes" (@click="selectNote (note)"
:class="{selected: note === selectedNote}">{{note.title}}</div>
</div>

You can combine a static class attribute with a dynamic one. It is
recommended that you put the nondynamic classes into the static attribute
because Vue will optimize the static values.

Now, when you click on a note in the list to select it, its background will change color:

+ Add note

New note 1

New note 3

New note 4

New note 5

Conditional templates with v-if

We need one last thing before testing our change; the main and preview panes shouldn't be
displayed if no note is selected--it would not make sense for the user to have an empty
editor and preview pane pointing to nothing, and it would make our code crash since
selectedNote would be null. Thankfully, the v-if directive can dynamically take parts
out of the template when we want. It works just like the JavaScript i f keyword, with a
condition.

[41]

Project 1 - Markdown Notebook Chapter 2

In this example, the div element will not be in the DOM at all while the 1oading property
is falsy:
<div wv-if="loading">

Loading...
</div>

There are also two other useful directives, v—else and v-else-if, that will work as you
might have expected:

<div v-if="loading">
Loading...
</div>

<div v-else-if="processing">
Processing
</div>

<div v-else>
Content here
</div>

Back in our app, add the v-if="selectedNote" condition to both the main and preview
panes so that they are not added to the DOM until a note is selected:

<!-- Main pane -->
<section class="main" v-if="selectedNote">

</section>

<!-- Preview pane ——>
<aside class="preview" v-if="selectedNote" v-html="notePreview">
</aside>

The repetition here is a bit unfortunate, but Vue has us covered. You can surround both
elements with a special <template> tag that acts like braces in JavaScript:
<template v-if="selectedNote">
<!-- Main pane -->

<section class="main">

</section>

<!-- Preview pane ——>
<aside class="preview" v-html="notePreview">
</aside>

</template>

[42]

Project 1 - Markdown Notebook Chapter 2

At this point, the app should look like this:

[3 Notebook x W\
<« C | @ filey///Dy/Mes%20documents/GitHub/packt-vue-project-guide/chapter2-full/index htm|
*%Hil** This notebook is using [markdoun] " |
(https: //github. con/adan-p/markdown- Hi! This notebook is using markdown for formatting!

here/wiki/Markdown-Cheatsheet) for formatting!
New note 1

New note 2

New note 3

New note 4

New note 5

The <template> tag will not be present in the DOM,; it is more like a
ghost element that is useful to regroup real elements together.

Saving the notes with the deep option

Now, we would like to save and restore the notes between sessions, just like we did for the
note content:

1. Let's create a new saveNotes method. Since we can't save an array of objects
directly into the localstorage API (it only accepts strings), we need to convert
it to JSON first with JSON. stringify:

methods: {
saveNotes () {

// Don't forget to stringify to JSON before storing
localStorage.setItem('notes', JSON.stringify(this.notes))

[43]

Project 1 - Markdown Notebook Chapter 2

console.log('Notes saved!', new Date())
I
I

Like we did for the previous content property, we will watch the notes data
property for changes to trigger the saveNotes method.

2. Add a watcher in the watch option:

watch: {
notes: 'saveNotes',

}

Now, if you try to add a few tasks, you should see something like this in your
console:

Notes saved! Mon Apr 42 2042 17:40:23 GMT+0100 (Paris, Madrid)
Notes saved! Mon Apr 42 2016 17:42:51 GMT+0100 (Paris, Madrid)

3. Change the initialization of the notes property in the data hook to load the
stored list from localStorage:

data () {
return {
notes: JSON.parse (localStorage.getItem('notes')) || [],
selectedId: null,
}
}!

The newly added notes should be restored when you refresh the page. However, if you try
to change the content of one note, you will notice that it doesn't trigger the notes watcher,
and thus, the notes are not saved. This is because, by default, the watchers are only
watching the direct changes to the target object--assignment of a simple value, adding,
removing, or moving an item in an array. For example, the following operations will be
detected by default:

// Assignment
this.selectedId = 'abcd'

// Adding or removing an item in an array
this.notes.push({...})
this.notes.splice(index, 1)

// Sorting an array
this.notes.sort (...)

[44]

Project 1 - Markdown Notebook Chapter 2

However, all the other operations, like these, will not trigger the watcher:

// Assignment to an attribute or a nested object
this.myObject.someAttribute = 'abcd'
this.myObject.nestedObject.otherAttribute = 42

// Changes made to items in an array
this.notes[0].content = 'new content'

In this case, you will need to add the deep option to the watcher:

watch: {
notes: {
// The method name
handler: 'saveNotes',

// We need this to watch each note's properties inside the array
deep: true,
}I
}

That way, Vue will also watch the objects and attributes recursively inside our notes array.
Now, if you type into the text editor, the notes list should be saved--the v-model directive
will modify the content property of the selected note, and with the deep option, the
watcher will be triggered.

Saving the selection

It would be very handy if our app could select the note that was selected last time. We just
need to store and load the selectedId data property used to store the ID of the selected
note. That's right! Once more, we will use a watcher to trigger the save:

watch: {

// Let's save the selection too
selectedId (val) {
localStorage.setlItem('selected-id', wval)

b

[45]

Project 1 - Markdown Notebook Chapter 2

Also, we will restore the value when the property is initialized:

data () {

return {
notes: JSON.parse(localStorage.getItem('notes')) || [],
selectedId: localStorage.getItem('selected-id') || null,

}
by

It's ready! Now, when you refresh the app, it should look exactly how you left it, with the
same note selected.

The note toolbar with extras inside

Some features are still missing from our app, such as deleting or renaming the selected note.
We will add these in a new toolbar, just above the note text editor. Go ahead and create a
new div element with the toolbar class ;inside the main section:

<!-- Main pane —-->
<section class="main">
<div class="toolbar">

<!-- OQOur toolbar is here! -->
</div>
<textarea v-model="selectedNote.content"></textarea>
</div>

We will add three new features in this toolbar:

¢ Renaming the note
¢ Deleting the note
¢ Marking the note as favorite

Renaming the note

This first toolbar feature is also the easiest. It only consists of a text input bound to the
title property of the selected note with the v-model directive.

[46]

Project 1 - Markdown Notebook Chapter 2

In the toolbar div element we just created, add this input element with the v-model
directive and a placeholder to inform the user of its function:

<input v-model="selectedNote.title" placeholder="Note title" />

You should have a functional rename field above the text editor and see the note name
change automatically in the note list as you type:

Guest _ o
[MNotebook x ‘
&« C | ® file:///D:/Mes%20documents/GitHub/packt-vue-project-guide/chapter2-fullfindex.html
=+ Add note | Meow| | Hi! This notebook is using markdown for formatting!
#*H11** This notebook is using [markdown]
New note 1 (https://github.com/adam-p/markdown-
_ here/wiki/Markdown-Cheatsheet) for formatting!
New note 3
New note 4
New note 5

Since we set the deep option on the notes watcher, the note list will be
saved whenever you change the name of the selected note.

[47]

Project 1 - Markdown Notebook Chapter 2

Deleting the note

This second feature is a bit more complicated because we need a new method:
1. Add a button element after the rename text input:

<button @click="removeNote" title="Remove note"><i
class="material-icons">delete</i></button>

As you can see, we listen to the c1ick event with the v-on shorthand (the @
character) that calls the removeNote method that we will create very soon. Also,
we put an appropriate icon as the button content.

2. Add a new removeNote method that asks the user for confirmation and then
removes the currently selected note from the notes array using the splice
standard array method:

removeNote () {
if (this.selectedNote && confirm('Delete the note?')) {
// Remove the note in the notes array
const index = this.notes.indexOf (this.selectedNote)
if (index !== -1) {
this.notes.splice(index, 1)

}

}

Now, if you try deleting the current note, you should note that the following three things
happen:

¢ The note is removed from the note list on the left
¢ The text editor and the preview pane are hidden
¢ The note list has been saved according to the browser console

[48]

Project 1 - Markdown Notebook Chapter 2

Favorite notes

The last toolbar feature is the most complex. We want to reorder the note list with the
favorite notes first. To do that, each note has a favorite Boolean property that will be
toggled with a button. In addition to that, a star icon will be displayed in the note list to
make it obvious which notes are favorite and which ones are not:

1. Start by adding another button to the toolbar before the Remove note ;button:
<button @click="favoriteNote" title="Favorite note"><i
class="material-icons">{{ selectedNote.favorite ? 'star'

'star_border' }}</i></button>

Once again, we use the v—on shorthand to call the favoriteNote method we will
create next. We will also display an icon, depending on the value of the favorite
property of the selected note--a full star if it is t rue, or an outlined one if it is not.

The final result will look like this:

On the left, there is a button for when the note is not favorite, and on the right, for
when it is, after clicking on it.

2. Let's create a very simple favoriteNote method that only invert the value of the
favorite ;Boolean property on the selected note:

favoriteNote () {
this.selectedNote.favorite = !this.selectedNote.favorite

b
We can rewrite this with the XOR operator:

favoriteNote () {
this.selectedNote.favorite = this.selectedNote.favorite * true

I
This can be nicely shortened, as follows:

favoriteNote () |
this.selectedNote.favorite "= true

H

[49]

Project 1 - Markdown Notebook Chapter 2

Now, you should be able to toggle the favorite button, but it doesn't have any real
effect yet.

We need to sort the note list in two ways--first, we sort all the notes by their
creation date, then we sort them so that the favorite ones are put at the start.
Thankfully, we have a very convenient standard array method for that--sort. It
takes one argument, which is a function with two parameters--two items to be
compared. The result is a number, as follows:

e 0, if the two items are in an equivalent position
o -1, if the first item should be before the second one
e 1, if the first item should be after the second one

You are not limited to the 1 number, since you can return any arbitrary
number, positive or negative. For example, if you return -42, it will be the
same as —1.

The first sorting operation will be achieved with this simple subtracting code:

sort ((a, b) => a.created - b.created)

Here, we compare two notes on their creation date that we stored as a number of
milliseconds, thanks to Date.now (). We just subtract them so that we get a
negative number if b was created after a, or a positive number if a was created
after b.

The second sort is done with two ternary operations:
sort ((a, b) => (a.favorite === b.favorite)? 0 : a.favorite? -1 : 1)

If both notes are favorite, we don't change their position. If a is favorite, we return
a negative number to put it before b. In the other case, we return a positive
number, so b is put before a in the list.

The best way is to create a computed property called sortedNotes, which will
get updated and cached automatically by Vue.

[50]

Project 1 - Markdown Notebook Chapter 2

3. Create the new sortedNotes computed property:

computed: {

sortedNotes () {
return this.notes.slice()
.sort ((a, b) => a.created - b.created)
.sort ((a, b) => (a.favorite === b.favorite)? 0
a.favorite? -1
1)
b

Since sort modifies the source array directly, we should create a copy of
it with the s1ice method. This will prevent unwanted triggers of the
notes watcher.

Now, we can simply swap notes with sortedNotes in the v-for directive used
to display the list--it will now sort the notes automatically as we expected:

<div v-for="note of sortedNotes">

We can also use the v-if directive we introduced earlier to display a star icon
only if the note is favorite:

<i class="icon material-icons" v-if="note.favorite">star</i>
4. Modify the note list with the preceding changes:

<div class="notes">
<div class="note" v-for="note of sortedNotes"
:class="{selected: note === selectedNote}"
@click="selectNote (note) ">
<i class="icon material-icons" v—-if="note.favorite">
star</i>
{{note.title}}
</div>
</div>

The app should now look as follows:

[51]

Project 1 - Markdown Notebook Chapter 2

[4 Notebook x

&« C | @® file:///D/Mes%20documents/GitHub/packt-vue-project-guide/chapter2-full/index.html

-+ Add note Meow ﬂ Hi! This notebook is using markdown for formatting!
##Hil** This notebook is using [markdown]

Meow

(https://github.com/adam-p/markdown-
here/wiki/Markdown-Cheatsheet) for formatting!

New note 1

New note 3

New note 4

New note 5

The status bar

The last section we will add to our app is a status bar, displayed at the bottom of the text
editor, with some useful info--the date the note was created, with the lines, words, and
characters count.

Create a new div element with the toolbar and status-bar classes and place it after the
textarea element:

<!-- Main pane —-—>
<section class="main">
<div class="toolbar">
<l— .. >
</div>
<textarea v-model="selectedNote.content"></textarea>
<div class="toolbar status-bar">
<!—— The new status bar here! -->
</div>
</section>

[52]

Project 1 - Markdown Notebook Chapter 2

Created date with a filter

We will now display the creation date of the selected note in the status bar.
1. In the status bar div element, create a new span element as follows:

Created

{{ selectedNote.created }}

Now, if you look at the result displayed in your browser, you should see the
number of milliseconds representing the date the note was created:

. . ##Hil*#* This notebook is using [markdown]
Friends birthdays {(https://github.com/adam-p/markdown-
here/wiki/Markdown-Cheatsheet) for formatting!
Cookie recipes
Test note
What does 42 mean?

On Vue s

Things | need to learn

1482793879122

This is not user-friendly at all!

We need a new library to help us format the date into a more readable result--
moment js, which is a very popular time and date manipulation library.

2. Include it in the page like we did for the marked library:

<script src="https://unpkg.com/moment"></script>

[53]

Project 1 - Markdown Notebook Chapter 2

To format a date, we will first create a moment object, and then we will use the
format method like in the following:

moment (time) .format ('DD/MM/YY, HH:mm')

Now is the time to introduce one last feature of Vue for this chapter--the filters.
These are functions that are used inside templates to easily process data before it
is displayed or passed to an attribute. For example, we could have an uppercase
filter to transform a string into uppercase letters or a currency filter to convert
currencies on the fly in a template. The function takes one argument--the value to
be processed by the filter. It returns the processed value.

So, we will create a new date filter that will take a date time and will format it to
a human-readable format.

3. Register this filter with the vue . filter global method (outside of the Vue
instance creation code, for example, at the beginning of the file):

Vue.filter ('date', time => moment (time)
.format ('DD/MM/YY, HH:mm'))

Now, we can use this date filter in our template to display dates. The syntax is
the JavaScript expression like we used before, followed by a pipe operator and the
name of the filter:

{{ someDate | date }}

If someDate contains a date, it will output something like this in the DOM,
respecting the DD/MM/YY, HH:mm format we defined before:

12/02/17, 12:42
4. Change the stat template into this:

Created

{{ selectedNote.created | date }}

[54]

Project 1 - Markdown Notebook Chapter 2

We should have the date nicely formatted and displayed in our app:

. . #%Hi1#*%* This notebook is using [markdown]
Friends birthdays (https://github.com/adam-p/markdown-
here/wiki/Markdown-Cheatsheet) for formatting!

Cookie recipes

Test note

What does 42 mean?

On Vue js

Things | need to learn

27/12/16, 00:11

Text stats

The last stats we can display are more "writer-oriented"--the lines, words, and characters
count:

1. Let's create three new computed properties for each counter, with some Regular
Expressions to get the job done:

computed: {
linesCount () {
if (this.selectedNote) {
// Count the number of new line characters
return this.selectedNote.content.split (/\r\n|\r|\n/).length
}
}I

wordsCount () {
if (this.selectedNote) {
var s = this.selectedNote.content

// Turn new line cahracters into white-spaces
s = s.replace(/\n/g, ' ")
// Exclude start and end white-spaces

[551]

Project 1 - Markdown Notebook Chapter 2

s = s.replace(/ ("\s*) | (\s*$)/gi, '")

// Turn 2 or more duplicate white-spaces into 1
s = s.replace(/\s\s+/gi, ' ")

// Return the number of spaces

return s.split (' ').length
}
¥
charactersCount () {
if (this.selectedNote) {

iy

}

return this.selectedNote.content.split('').length

Here, we added some conditions to prevent the code from running if no
note is currently selected. This will avoid crashes if you use the Vue
devtools to inspect the app in this case, because it will try to compute all
the properties.

2. You can now add three new stat span elements with the corresponding
computed properties:

Lines

{{ linesCount }}

Words

{{ wordsCount }}

Characters

{{ charactersCount }}

[561]

Project 1 - Markdown Notebook Chapter 2

The final status bar should look like this:

. . **¥H1i!*%* This notebook is using [markdown]
Friends birthdays (https://github.com/adam-p/markdown-
here/wiki/Markdown-Cheatsheet) for formatting!

Cookie recipes

Test note

What does 42 mean?

OnVuejs

Things | need to learn

27/M12/16, 00:11 1 8 123

Summary

In this chapter, we created our first real Vue app, with several useful functions, like a real-
time markdown preview, a note list, and the local persistence of the notes. We introduced
different Vue features, such as the computed properties that are automatically updated and
cached as needed, the methods to reuse logic inside functions, the watchers to trigger code
when properties change, lifecycle hooks to execute code when the Vue instance is created,
and the filters to easily process expressions in our template. We also used a lot of Vue
directives inside our template, such as ;v-model to bind form inputs, v—-html to display
dynamic HTML from our JavaScript properties, v-for to repeat elements and display lists,
v-on (or @) to listen to events, v-bind (or :) to dynamically bind HTML attributes to
JavaScript expressions or to apply CSS classes dynamically, and v-if to include or not
template parts, depending on JavaScript expressions. We saw all of these features come
together to build a fully functional web application, with Vue superpower helping us to get
the work done without getting in the way.

In the next chapter, we will start a new project--a card-based browser game. We will
introduce some new Vue features and will keep reusing all we know to continue building
better and prettier web apps.

[571

Project 2 - Castle Duel Browser
Game

In this chapter, we will create an entirely different app--a browser game. It will consist of
two players, each commanding an impressive castle and trying to destroy the other one by
bringing either the opponent's food or damage levels to zero with the help of action cards.

In this project and in the following ones, we will split our app into reusable components.
This is the heart of the framework, and all its API is built around this idea. We will see how
to define and use components and how to make them communicate with each other. The
result will be a better structure for our app.

Rules of the game

Here are the rules we will implement in the game:

e Two players play turn by turn

e Each player starts the game with 10 health, 10 food, and a 5-card hand

e The players can't have more than 10 health and 10 food

¢ A player loses when their food or health reaches zero

¢ Both the players can lose in a draw

¢ During one player's turn, each player's only possible action is to play a card,
which is then put in the discard pile

e Each player draws a card from the draw pile at the beginning of the turn (except
for their first turn)

e Thanks to the two preceding rules, each player has exactly five cards in their
hand when they start their turn

Project 2 - Castle Duel Browser Game Chapter 3

e If the draw pile is empty when the player draws a card, the draw pile is refilled
with the discard pile

e Cards can modify the health and food of the player or their opponent
e Some cards can also make a player skip their turn

The gameplay is built around the facts that players must play one and only one card each
turn and that most of the cards will have a negative effect on them (the most common one
being losing food). You have to think of your strategy before playing.

The app will consists of two layers--the world, where game objects (such as the scenery and
the castles) are drawn, and the user interface.

The world will have two castles facing each other, a ground, and a sky, with multiple
animated clouds; each castle will feature two banners--the green one being the player food,
and the red one being the player health--with a little bubble displaying the amount of food
or health remaining:

For the UI, there will be a bar at the top, with a turn counter and the names of the two
players. At the bottom of the screen, the hand will display the cards of the current player.

[591]

Project 2 - Castle Duel Browser Game Chapter 3

William the Bald

Anne of Cleves

Farm Trebuchet
® []

Granary
L]

Quick Repair
[]

Do nothing
Gather 2 Food #*

Spend 3 Food #
Repair 3 Damage =~

Gather 5 Food #
Skip your next turn

Spend 3 Food #
Take 1 Damage =
Deal 4 Damage=~

This is not without
consequences on the
moral and energy!

«The finest machine Man
ever created!»

Pray in the chapel, and
hope someone will listen.

«One should be patient
to grow crops.»

In addition to these, a few overlays will be periodically shown, hiding the hand. One will
show the name of the player going next:

Anne of Cleves Turn 6 William the Bald

William the Bald,
your turn has come!

Tap to continue

[60]

Project 2 - Castle Duel Browser Game Chapter 3

It will be followed by another overlay displaying the card that was played last turn by the
opponent. This will allow the game to be played on the same screen (for example, a tablet).

Anne of Cleves Turn 6 William the Bald

Anne of Cleves just played:

Quick Repair

Spend 3 Food #

Repair 3 Damage =

This is not without
consequences on the
moral and energy!

The third overlay will be only shown when the game is over, displaying whether the
players have won or lost. Clicking on this overlay will reload the page, allowing the players
to start a new game.

[61]

Project 2 - Castle Duel Browser Game Chapter 3

Anne of Cleves Turn 6 William the Bald

Game Over

Anne of Cleves is victorious

William the Bald is defeated

Setting up the project
Download the chapter 2 files and extract the project setup into an empty folder. You
should have the following content:

index.html: The web page

style.css: The CSS file

svg: Contains all the SVG images of the game

cards. js: With all the cards data ready to use

state. js: Where we will consolidate the main data properties of the game
utils.js: Where we will write useful functions

banner-template.svg: We will use the content of this file later

We will start with our main JavaScript file--create a new file called main. js.

Open the index.html file and add a new script tag referencing the new file, just after the
state.js one:

<!-- Scripts -->
<script src="utils.js"></script>

[62]

Project 2 - Castle Duel Browser Game Chapter 3

<script src="cards.]js"></script>
<script src="state.]js"></script>
<script src="main.js"></script>

Let's create the main instance of our app in the main. js file:

new Vue ({
name: 'game',
el: '"#app',
})

We are now ready to go!

The calm before the storm

In this section, we will introduce a few new Vue features that will help us build the game,
such as components, props, and event emitting!

The template option

If you look in the index.html file, you will see that the #app element is already there and
empty. In fact, we won't write anything inside. Instead, we will use the template option
directly on the definition object. Let's try it with a dumb template:

new Vue ({
name: 'game',
el: '#app',

template: "<div id="#app">
Hello world!
</div>",

})

Here, we used the new JavaScript strings, with the * character (back quote). It allows us,
among other things, to write text spanning multiple lines, without having to write verbose
string concatenations.

Now if you open the app, you should see the 'Hello world!' text displayed. As you
guessed, we won't inline the template in the #app element going forward.

[63]

Project 2 - Castle Duel Browser Game Chapter 3

The app state

As explained before, the state. js file will help us consolidate the main data of our
application in one place. That way, it will be easier to write game logic functions without
polluting the definition object with a lot of methods.

1. The state. s file declares a state variable that we will use as the data of our
app. We can use it directly as the data option, as follows:

new Vue ({
/...
data: state,

})

Now, if you open the devtools, you should see the only data property already
declared in the state object:

[ﬂ Elements Console Wue Scurces Metwork Timeline Profiles Application Security Audits Adblock Plus E 4
v Ready. Detected Vue 2.1.8. A Components Y Vuex w Events 1 Refresh
Q Game> @ Inspect DOM

worldRatic: @.665625

The world ratio is a number representing how much we should scale the game
objects to fit in the window. For example, . 6 means that the world should scale at
60% of its original size. It is computed with the getWorldRatio function in the
utils.js file.

There is one thing missing, though--it is not recomputed when the window is
resized. This is something we have to implement ourselves. After the Vue instance
constructor, add an event listener to the window object to detect when it is
resized.

[64]

Project 2 - Castle Duel Browser Game Chapter 3

2. Inside the handler, update the wor1dRatio data property of the state. You can
also display worldRatio in the template:

new Vue ({
name: 'game',
el: '#app',

data: state,

template: “<div id="#app">
{{ worldRatio }}
</div>",
})

// Window resize handling
window.addEventListener ('resize', () => {
state.worldRatio = getWorldRatio ()

})

Try resizing your browser window horizontally--the wor1dRatio data property
is updated in the Vue app.

But wait! We are modifying the state object, not the Vue instance...

You are right! However, we have set the Vue instance data property with the
state object. This means Vue has set up reactivity on it, and we can change its
attributes to update our app, as we will see in a second.

3. To ensure that state is the app's reactive data, try comparing the instance data
object and the global state object:

new Vue ({
//
mounted () {
console.log (this.$data === state)

by
})

These are the same objects we set with the data option. So when you do:
this.worldRatio = 42

You are also doing this:

this.$data.worldRatio = 42

[65]

Project 2 - Castle Duel Browser Game Chapter 3

This is, in fact, the same as follows:

state.worldRatio = 42

This will be useful in the gameplay function that will use the state object to update
the game data.

The almighty components

Components are the building blocks that will compose our app--it's the central concept of
the Vue apps. They are small parts of the view, and they should be relatively small,
reusable, and as self-sufficient as possible--structuring an app with components will then
help maintain and evolve it, especially if it becomes large. In fact, this is becoming the
standard method for creating huge web apps in an efficient and manageable way.

In concrete terms, your app will be a giant tree of smaller components:

-5 RN

For example, your app could have a form component, which could contain several input
components and button components. Each one would be a very specific part of the UI, and
they would be reusable all across the app. Being quite small in scope, they would be easy to
understand and reason about, and thus easier to maintain (issue fixing) or to evolve.

Building the user interface

The first components we will create are part of the Ul layer. There will be a top bar with the
players' names and a turn counter, the cards with their name and description, the hand with
the current player cards, and the three overlays.

[66]

Project 2 - Castle Duel Browser Game Chapter 3

Our first component - the top bar

The top bar, our first component, will be placed at the top of the page and will display the
names of the two players and a turn counter in the middle. It will also show an arrow facing
the name of the player currently taking their turn.

It will look like this:

Anne of Cleves William the Bald

“allll:::::‘.l..r'

Adding some gameplay data to the state

Before creating the component, we need some new data properties:

o turn: The number of the current turn; starts at 1
e players: The array of player objects
e currentPlayerIndex: The index of the current player in the players array

Add them in the state in the state. s file:

// The consolidated state of our app
var state = {

// World

worldRatio: getWorldRatio(),

// Game

turn: 1,

players: [

{
name: 'Anne of Cleves',

b
{

name: 'William the Bald',
b

I
currentPlayerIndex: Math.round(Math.random()),

[67]

Project 2 - Castle Duel Browser Game Chapter 3

Math.round (Math.random()) will use 0 or 1 randomly to choose who
goes first.

We will use these properties to display the player names and the turn counter in the top

bar.

Defining and using the components

We will write our UI components in a new file:

1. Create a components folder and a new ui . js file inside it. Include it in the main
index.html page, just before the main script:

<!-- Scripts -->

<script src="utils.js"></script>

<script src="cards.js"></script>

<script src="state.js"></script>

<script sre="components/ui.js"></script>
<script src="main.Jjs"></script>

In this file, we will register our components, so it's important that the main Vue
instance is created afterward, and not before. Else, we would get errors of
components not being found.

To register a component, we can use the global Vue . component () function. It
takes two arguments; the name under which we register the component, and its

definition object, which is using the exact same options as the Vue instance that
we already know.

2. Let's create the top-bar component in the ui. js file:

Vue.component ('top-bar', {
template: “<div class="top-bar">
Top bar
</div>",

})

[68]

Project 2 - Castle Duel Browser Game Chapter 3

Now, we can use the top-bar component in our templates, just like any other
HTML tags, for instance, <top-bar>.

3. In the main template, add a new top-bar tag:

new Vue ({

/..

template: “<div id="#app">
<top-bar/>

</div>",

})

This template will create a new top-bar component and render it inside the #app
element, using the definition object we just defined. If you open the devtools, you
should see two entries:

Top bar

[ﬂ Elements Console Wue Sources Metwork Timeline Profiles 3 i X

v Ready. Detected Vue 2.1.8. N -

Q, Filter components

¥ <Game
TopBar Select a component instance to inspect.

Each one is a Vue instance--Vue actually created a second instance using the
definition we provided for the top-bar component.

[69]

Project 2 - Castle Duel Browser Game Chapter 3

Parent-to-child communication with Props

As we saw in the The almighty components section, our component-based app will have a
tree of components, and we need them to communicate with each other. For now, we will
only focus on descending, parent-to-child communication. This is accomplished with
"props".

Our top-bar component needs to know who the players are, which one is currently
playing, and what the current turn number is. So, we will need three props--players,
currentPlayerIndex, and turn.

To add props to a component definition, use the props option. For now, we will simply list
the names of our props. However, you should know that there is a more detailed notation
with an object instead, which we will cover in the next chapters.

1. Let's add the props to our component:

Vue.component ('top-bar', {
//
props: ['players', 'currentPlayerIndex', 'turn'],

H)

In the parent component, which is the root application, we can set the props value
the exact same way we would for HTML attributes.

2. Go ahead and use the v-bind shorthand to wire the props value with the app
data in the main template:

<top-bar :turn="turn" :current-player-index="currentPlayerIndex"
:players="players" />

Note that since HTML is case-insensitive and by convention, it is
recommended to use the kebab-case (with dashes) names of our props,
and the camel-case names in the JavaScript code.

Now, we can use the props in our top-bar component just like data properties.
For example, you could write something like this:

Vue.component ('top-bar', {
//
created () A
console.log(this.players)
}I
})

[70]

Project 2 - Castle Duel Browser Game Chapter 3

This would print the players array sent by the parent component (our app) in
the browser console.

Props in our template

We will now use the props we created in the template of the t op-bar component.

1. Change the top-bar template to display the player's name with the players
prop:

template: “<div class="top-bar">
<div class="player p0">{{ players[0].name }}</div>
<div class="player pl">{{ players[1l].name }}</div>
</div>",

As you can see in the preceding code, we are also using the props like we did with
properties in templates. You should see the player names displayed in the app.

2. Continue with the turn counter between players using the turn prop:

template: “<div class="top-bar">
<div class="player p0">{{ players|[0].name }}</div>
<div class="turn-counter">
<div class="turn">Turn {{ turn }}</div>
</div>
<div class="player pl">{{ players[1l].name }}</div>
</div>",

In addition to the label, we also want to display a big arrow facing the current
player to make it more obvious.

3. Add the arrow image inside the . turn-counter element, and add a dynamic
class using the currentPlayerIndex prop with the v-bind shorthand we used
in chapter 2, Markdown Notebook:

template: “<div class="top-bar" :class="'player-' +
currentPlayerIndex">
<div class="player p0">{{ players[0].name }}</div>
<div class="turn-counter">

<div class="turn">Turn {{ turn }}</div>
</div>
<div class="player pl">{{ players[l].name }}</div>
</div>",

[71]

Project 2 - Castle Duel Browser Game Chapter 3

Now, the app should display the fully featured top bar, with the two players, names and
the turn counter between them. You can test the Vue-automated reactivity by typing these
commands into the browser console:

1
0

state.currentPlayerIndex
state.currentPlayerIndex

You should see the arrow turning around to face the correct player name, which gets
emphasized:

Anne of Cleves William the Bald

[w ﬂ Elements Console Vue Sources MNetwork Timeline Profiles Application Security Audits » I ¢

® ¥ top ¥ [Preserve log

» state.currentPlayerIndex = 1
1
>

Displaying a card
All the cards are described in the card definition objects, declared in the cards. js file. You

can open it, but you shouldn't have to modify its content. Each card definition has the
following fields:

e id: Unique for each card

¢ type: Changes the color background to help distinguish the cards from each
other

e title: The displayed name of the card

¢ description: An HTML text explaining what the card does

¢ note: An optional flavor text, in HTML too

¢ play: The function we will call when the card is played

[72]

Project 2 - Castle Duel Browser Game

Chapter 3

We need a new component to display any card, either in the player hand or in the overlay,
that describes what the opponent played last turn. It will look like this:

Description

Note/Flavor text

1. In the components/ui. js file, create a new card component:

Vue.component ('card', {
// Definition here

})

2. This component will receive a de f prop that will be the card definition object we

described above. Declare it with the props option as we did for the top-bar
component:

Vue.component ('card', {
props: ['def'],
)

3. Now, we can add the template. Start with the main div element, with the card
class:

Vue.component ('card', {
template:
</div>",
props: ['def'],

‘<div class="card">

})

4. To change the background color depending on the card type, add a dynamic CSS
class that uses the type property of the card object:

<div class="card" :class="'type-' + def.type">

[73]

Project 2 - Castle Duel Browser Game Chapter 3

For example, if the card has the 'attack' type, the element will get the t ype-
attack class. Then, it will have a red background.

5. Now, add the title of the card with the corresponding class:

<div class="card" :class="'type-' + def.type">
<div class="title">{{ def.title }}</div>
</div>

6. Add the separator image, which will display some lines between the card title
and the description:

<div class="title">{{ def.title }}</div>

After the image, append the description element.

Note that since the description property of the card object is an HTML-
formatted text, we need to use the special v—-html directive introduced in
the chapter 2, Markdown Notebook.

7. Use the v—html directive to display the description:

<div class="description"><div wv-html="def.description"></div>
</div>

You may have noted that we added a nested div element, which will
contain the description text. This is to center the text vertically using CSS
flexbox.

8. Finally, add the card note (which is also in an HTML-formatted text). Note that
some cards don't have note, so we have to use the v-1if directive here:

<div class="note" v-if="def.note"><div v-html="def.note"></div>
</div>

The card component should now look like this:

Vue.component ('card', {
props: ['def'],
template: “<div class="card" :class="'type-' + def.type">
<div class="title">{{ def.title }}</div>

<div class="description"><div v-

[74]

Project 2 - Castle Duel Browser Game Chapter 3

html="def.description"></div></div>
<div class="note" v-if="def.note"><div v-
html="def.note"></div></div>
</div>",
H)

Now, we can try our new card component in the main application component.

9. Edit the main template as follows and add a card component just after the top
bar:

template: “<div id="#app">
<top-bar :turn="turn" :current-player-
index="currentPlayerIndex" :players="players" />
<card :def="testCard" />

</div>",

10. We also need to define a temporary computed property:
computed: {

testCard () {
return cards.archers
}!
}!

Now, you should see a red attack card with a title, description, and flavor text:

Archers

Spend 3 Food #

Deal 3 Damage=

«Ready your bows! Nock!
Mark! Draw! Loose!»

[75]

Project 2 - Castle Duel Browser Game Chapter 3

Listening to native events on components

Let's try adding a click event handler on our card:

<card :def="testCard" @eclick="handlePlay" />

With a dumb method in the main component:

methods: {
handlePlay () {
console.log('You played a card!"')
}
}

If you test this in the browser, you may be surprised that it doesn't work as expected.
Nothing is output to the console...

This is because Vue has its own event system for components, called "custom events", that
we will learn about in a moment. This system is separate from the browser events, so here
Vue expects a custom 'click' event, and not the browser one. Thus, the handler method
is not called.

To get around this, you should use the . nat ive modifier on the v-on directive, as follows:

<card :def="testCard" @click.native="handlePlay" />

Now, the handlePlay method is called when you click on the card, as expected.

Child-to-parent communication with custom events

Previously, we used props to communicate from a parent component to its children. Now,
we would like to do the opposite and communicate from one child component to its parent.
For our card component, we would like to tell the parent component that the card is being
played by the player when they click on it. We can't use props here, but we can use custom
events. In our components, we can emit events that can be caught by the parent component
with the $emit special method. It takes one mandatory argument, which is the event type:

this.$emit ('play"')

We can listen to the custom events inside the same Vue instance with the $on special
method:

this.$on('play’', () => {
console.log('Caught a play event!')
})

[76]

Project 2 - Castle Duel Browser Game Chapter 3

The $emit method also sends a 'play' event to the parent component. We can listen to it
in the parent component template with the v-on directive just like we did before:

<card v-on:play="handlePlay" />

You can also use the v-bind shorthand:

<card @play="handlePlay" />

We can also add as many arguments as we like that will get passed to the handler methods:
this.$emit ('play', 'orange',6 42)

Here, we emitted a 'play' event with the following two arguments-- 'orange' and 42.

In the handle, we can get them via the arguments, as follows:

handlePlay (color, number) ({
console.log('handle play event', 'color=', color, 'number=', number)

}

The color argument will have the 'orange' value and the number argument will have the
42 value.

Like we saw in the preceding section, custom events are completely
separate from the browser event system. The special methods--$on and
$emit--are not aliases to the standard addEventListener and
dispatchEvent. That explains why we need the .native modifier on
components to listen to browser events such as "click"'.

Back to our card component, we just need to emit a very simple event to tell the parent
component that the card is being played:

1. First, add the method that will emit the event:

methods: {
play () {
this.$emit ('play"')
}I
}I

2. We would like to call this method when the user clicks on the card. Just listen to a
browser click event on the main card div element:

<div class="card" :class="'type-' + def.type" Qclick="play">

[77]

Project 2 - Castle Duel Browser Game Chapter 3

3. We are done with the card component. To test this, listen to the 'play' custom
event in the main component template:

<card :def="testCard" @play="handlePlay" />

Now, the handlePlay method will be called whenever the 'play' eventis
emitted.

We could just have listened to a native click event instead, but it's in most
cases a good idea to use custom events to communicate between
components. For example, we could also emit the 'play' event when the
user uses another method, such as using the keyboard to select the card
and pressing Enter; we won't implement that method in this book though.

The hand

Our next component will be the current player hand, holding the five cards they have. It
will be animated with a 3D transition and will also be responsible for the card animations
(when the card is drawn, and when it is played).

1. In the components/ui. js file, add a component registration with the 'hand' ID
and a basic template, with two div elements:

Vue.component ('hand', {
template: "<div class="hand">
<div class="wrapper">
<!-- Cards ——>
</div>
</div>",

)

The wrapper element will help us position and animate the cards.

Each card in the hand will be represented by an object. For now, it will have the
following properties:

e id: The card definition unique identifier
e def: The card definition object

[78]

Project 2 - Castle Duel Browser Game Chapter 3

As a reminder, all the card definitions are declared in the cards. js file.

2. Our hand component will receive these card objects representing the player hand
via a new array prop called cards:

Vue.component ('hand', {
//
props: ['cards'],

H)
3. We can now add the card components with the v-for directive:

<div class="wrapper">
<card v-for="card of cards" :def="card.def" />
</div>

4. To test our hand component, we will create in the app state a temporary property
called testHand (in the state. js file):

var state = {

//
testHand: [],

}
5. Add a createTestHand method in the main component (in the main. js file):

methods: {
createTestHand () {
const cards = []
// Get the possible ids
const ids = Object.keys (cards)

// Draw 5 cards

for (let i = 0; i < 5; i++) |
cards.push (testDrawCard())

}

return cards
b
b

[79]

Project 2 - Castle Duel Browser Game Chapter 3

6. To test the hand, we also need this temporary testDrawCard method that
simulates a random card draw:

methods: {
//
testDrawCard () {
// Choose a card at random with the ids
const ids = Object.keys (cards)

const randomId = ids[Math.floor (Math.random() * ids.length)]
// Return a new card with this definition
return {

// Unique id for the card

uid: carduid++,

// Id of the definition

id: randomId,

// Definition object

def: cards[randomId],

}
7. Use the created lifecycle hook to initialize the hand:

created () {
this.testHand = this.createTestHand()
I

cardUid is a unique identifier on cards drawn by the players that will be
useful to identify each of the cards in the hand, because many cards can
share the exact same card definition, and we will need a way to
differentiate them.

8. In the main template, add the hand component:

template: “<div id="#app">
<top-bar :turn="turn" :current-player-—
index="currentPlayerIndex" :players="players" />
<hand :cards="testHand" />
</div>",

[801]

Project 2 - Castle Duel Browser Game Chapter 3

The result in your browser should look like this:

Pikemen
°

Knighthood Quick Repair

Repair

Spend 7 Food # Spend 3 Food # Spend 1 Food

Deal 5 Damage= Repair 3 Damage = . _
? Gather 2 Food # P 9 Repair 5 Damage =

DEEIR =T ET RS
Skip your next turn

Knights may be even This is not without
more expansive than consequences on the
their mount. moral and energy!

Send your disposable
men to a certain death.

Animating the hand with transitions

During a game, the hand will be hidden when any overlay is shown. To make the app
prettier, we will animate the hand when it is added or removed from the DOM. To do that,
we will use CSS transitions together with a powerful Vue tool--the special <transition>
component. It will help us work with CSS transitions when adding or removing elements
with the v-1if or v-show directives.

1. First, add a new activeOverlay data property to the app state in the state.js

file:
// The consolidated state of our app
var state = {

// UL

activeOverlay: null,

//

}

2. In the main template, we will show the hand component only if activeOverlay
is not defined, thanks to the v-1if directive:

<hand :cards="testHand" v-if="!activeOverlay" />

3. Now, if you change state.activeOverlay to any truthy value in the browser
console, the hand will disappear:

state.activeOverlay = 'player-turn'

[81]

Project 2 - Castle Duel Browser Game Chapter 3

4. Also, if you set it back to null, the hand will be shown again:
state.activeOverlay = null

5. To apply a transition when a component is added or removed by a v—if or v-
show directive, surround it with a transition component like this:

<transition>
<hand v-if="!activeOverlay" />
</transition>

Note that this also works on HTML elements:

<transition>
<hl v-if="showTitle">Title</hl>
</transition>

The <transition> special component will not appear in the DOM, like
the <template> tag we used in Chapter 2, Markdown Notebook.

When the element is added to the DOM (the enter phase), the transition
component will automatically apply the following CSS classes to the element:

e v—enter-active: Apply the class while the enter transition is active. This class
is added before the element is inserted to the DOM, and it is removed when the
animation finishes. You should add some transition CSS properties in this
class and define their duration.

e v-enter: The starting state of the element. This class is added before the element
is inserted, and it is removed one frame after the element is inserted. For
example, you could set the opacity to 0 in this class.

e v-enter-to: The target state of the element. This class is added one frame after
the element is inserted, at the same time v-enter is removed. It is removed when
the animation finishes.

[82]

Project 2 - Castle Duel Browser Game Chapter 3

When the element is being removed from the DOM (the leave phase), they are
replaced by the following:

® v-leave-active: Applied while the leave transition is active. This class is added
when the leaving transition triggers, and it is removed after the element is
removed from the DOM. You should add some t ransition CSS properties in
this class and define their duration.

e v-leave: The starting state of the element when being removed. This class is also
added when the leaving transition triggers and is removed one frame after.

e v-leave-to: The target state of the element. This class is added one frame after
the leaving transition triggers, at the same time v-1eave is removed. It is
removed when the element is removed from the DOM.

During the leave phase, the element is not immediately removed from the
DOM. It will be removed when the transition finishes to allow the user to
see the animation.

Here is a schema that summarizes the two enter and leave phases, with the
corresponding CSS classes:

Enter Leave

Opacity: 0 Opacity: 1 Opacity: 0

v-enter v-enter-to v-leave v-leave-to

v-enter-active v-leave-active

[83]

Project 2 - Castle Duel Browser Game Chapter 3

The transition component will automatically detect the duration of the
CSS transitions applied on the element.

6. We need to write some CSS to make our animation. Create a new
transitions.css file and include it in the web page:

<link rel="stylesheet" href="transitions.css" />

Let's try a basic fading animation first. We want to apply a CSS transition on the
opacity CSS property for 1 second.

7. To do that, use both the v—enter-active and v-leave—active classes since it
will be the same animation:

.hand.v-enter-active,
.hand.v-leave—active {
transition: opacity 1s;

}

When the hand is either being added or removed from the DOM, we want it to
have an opacity of 0 (so it will be fully transparent).

8. Use both the v—enter and v-1leave-to classes to apply this full transparency:

.hand.v-enter,

.hand.v-leave-to {
opacity: 0;

}

9. Back to the main template, surround the hand component with a transition
special component:

<transition>
<hand v-if="!activeOverlay" :cards="testHand" />

</transition>

Now, when you hide or show the hand, it will fade in and out.

[84]

Project 2 - Castle Duel Browser Game Chapter 3

10. Since we may have to reuse this animation, we should give it a name:

<transition name="fade">
<hand v-if="!activeOverlay" :cards="testHand" />
</transition>

We have to change our CSS classes, because Vue will now use fade-enter-
active instead of v—enter-active.

11. Inthe transition.css file, modify the CSS selector to match this change:

.fade-enter—-active,
.fade-leave—-active {
transition: opacity 1s;

}

.fade-enter,
.fade-leave-to {
opacity: 0;

}

Now, we can reuse this animation on any element with <transition
name="fade">.

A prettier animation

We will now make a more complex but better animation, with some 3D effects. In addition
to the hand, we will animate the . wrapper element (for a 3D flip) and the . card elements.

The cards will start being piled up and will progressively expand to their expected position
in the hand. At the end, it will animate as if the player is picking up the cards from a table.

1. Start by creating new transition CSS classes with the 'hand' name instead of
'fade':

.hand-enter-active,
.hand-leave-active {
transition: opacity .5s;

}

.hand-enter,
.hand-leave-to {
opacity: O0;

t

[85]

Project 2 - Castle Duel Browser Game Chapter 3

2. Change the transition name in the main template too:

<transition name="hand">
<hand v-if="!activeOverlay" :cards="testHand" />
</transition>

3. Let's animate the wrapper element. Use the CSS transform property to apply a 3D
transformation to the element:

.hand-enter-active .wrapper,

.hand-leave-active .wrapper {
transition: transform .8s cubic-bezier(.08,.74,.34,1);
transform-origin: bottom center;

.hand-enter .wrapper,
.hand-leave-to .wrapper {

transform: rotateX(90deqg);
}

The right rotating axis is the horizontal one, which is x. This will animate the
cards just as if they were being picked up by the player. Note that there is a cubic-
bezier easing function defined to make the animation smoother.

4. Finally, animate the cards themselves by setting a negative horizontal margin so
that they will seem to be piled up:

.hand-enter-active .card,
.hand-leave-active .card {
transition: margin .8s cubic-bezier(.08,.74,.34,1);

.hand-enter .card,

.hand-leave-to .card {
margin: 0 -100px;

}

Now, if you hide and show the hand with the browser console like we did before,
it will have a nice animation.

[86]

Project 2 - Castle Duel Browser Game Chapter 3

Playing a card

Now, we need to handle the 'play' event in the hand component we emit in the cards
when the user clicks on them, and emit a new 'card-play' event to the main component
with an additional argument--the played card in question.

1. First, create a new method called handlePlay. It takes a card argument and
emits the new event to the parent component:

methods: {
handlePlay (card) {
this.$emit ('card-play', card)

by
by

2. Then, add a listener to our cards for the 'play' event:

<card v-for="card of cards" :def="card.def"
@play="handlePlay (card) />

As you can see here, we directly use the iterator variable card of the v-
for loop. That way, we don't need the card component to emit its card
item since we already know what it is.

To test the card play, we will only remove it from the hand for now.

3. Create a new temporary method called testPlayCard in the main component in
the main. js file:

methods: {

//

testPlayCard (card) {
// Remove the card from player hand
const index = this.testHand.indexOf (card)

this.testHand.splice (index, 1)

}
by

4. Add the event listener for the 'card-play' event on the hand component in the
main template:

<hand v-if="!activeOverlay" :cards="testHand" @card-
play="testPlayCard" />

[871]

Project 2 - Castle Duel Browser Game Chapter 3

If you click on a card, it should now emita 'play' event to the hand component, which
will then emita 'card-play' event to the main component. It will, in turn, remove the
card from the hand, making it disappear. To help you debug this sort of use case, the
devtools have an Events tab:

v Ready. Detected Vue 2.2.1. A Components £0) Vuex “ Events £ Refresh
Q © Clear @ Recording name: “"play"

type: "femit"
card-play femit b Hand source: "<Cards"

¥ payload: Array[@]

play $emit by <Card> 82:55:31

Animating the card list

There are three missing animations for our hand--when a card is either added or removed
from the player hand, and when it is moved. When the turn begins, the player will draw a
card. It means that we will add a card to the hand cards list, and it will slide from the right
into the hand. When a card is played, we want it to go up and grow bigger.

To animate a list of elements, we will need another special component--<transition-
group>. It animates the children when they are added, removed, and moved. In a template,
it looks like this:

<transition—-group>
<div v-for="item of items" />
</transition-group>

Unlike the <t ransition> element, the transition group will appear in the DOM as a
 element by default. You can change the HTML element with the tag prop:

<transition-group tag="ul">
<1li v-for="item of items" />
</transition—-group>

[881]

Project 2 - Castle Duel Browser Game Chapter 3

In the template of our hand component, enclose the card components with a transition
group, specify the name of the transition that we will call "card", and add the "cards™"
CSS class:

<transition-group name="card" tag="div" class="cards">
<card v-for="card of cards" :def="card.def" @play="handlePlay (card) />
</transition—-group>

Before we can continue, there is one important thing missing--the children of the transition
group must be identified by a unique key.

The key special attribute

When Vue is updating a list of DOM elements in a v—for loop, it tries to minimize the
number of operations applied to the DOM, such as adding or removing elements. This is a
very efficient way of updating the DOM in most cases and can improve the performance.

In order to do this, it reuses elements as much as it can and patches the DOM only where it
is needed to have the desired result. It means repeated elements will be patched in place
and won't be moved if an item is added or removed from the list. However, this also means
that they won't animate if we apply transitions on them.

The following is a schema of how this works:

div 1 div 1 div 1
a a a
div 2 div 2 div 2
b b b
—l —

div 3 div 3 div 3
2 ., d d
div 4
d-

[891]

Project 2 - Castle Duel Browser Game Chapter 3

In this schema, we remove the third item in the list, which is c. However, the third div
element will not be destroyed--it will be reused with the fourth item in the list, which is d.
Actually, this is the fourth div element that is destroyed.

Fortunately, we can tell Vue how each element is identified so that it can reuse and reorder
them. To do that, we will need to specify a unique identifier with the key special attribute.
For example, each of our items could have a unique ID that we would use as the key:

div 1 div 1 div 1
a a a
div 2 div 2 div 2
b b b
—l —l
div 3 div 4
B i i d
div 4 div 4
d d

Here, we specify keys so that Vue knows the third div element should be destroyed and the
fourth div element moved.

The key special attribute works like a standard attribute, so we need to use
the v-bind directive if we want to assign a dynamic value to it.

Back to our cards, we can use the unique identifier on the cards as the key:

<card v-for="card of cards" :def="card.def" :key="card.uid"
@play="handlePlay (card) />

[90]

Project 2 - Castle Duel Browser Game Chapter 3

Now, if we add, move, or delete a card item in the JavaScript, it will be reflected with the
right order in the DOM.

The CSS transitions

Like before, we have the following six CSS classes at our disposable, prefixed with the name
Ofourgnﬂq)ﬁanﬁﬁon,'card':card—enter—active,card—enter,card—enter—tq
card-leave-active, card-leave, and card-leave-to. They will be applied to the
direct children of the group transition, that is, our cards components.

1. The group transition has an additional class applied to moving items--v-move.
Vue will use the CSS transform property on the items to make them move, so
we just need to apply a CSS transition on it with at least a duration:

.card-move {
transition: transform .3s;

}

Now, when you click on a card to play it, it should disappear and the remaining
cards will move to their new position. You can also add cards to the hand.

2. Select the main component in the Vue devtools and execute this into the browser
console:

state.testHand.push ($Svm.testDrawCard())

Selecting a component in the devtools exposes it in the browser console as
Svm.

Like we did for the hand, we will also add animations for the cards when they
enter the hand, and when they are played (and thus leave the hand).

3. Since we need to transition multiple CSS properties on the card with the same
timings all the time (except during the leave transition), we will change the
.card-move rule we just wrote into this:

.card {
/* Used for enter, move and mouse over animations */
transition: all .3s;

[91]

Project 2 - Castle Duel Browser Game Chapter 3

4. For the enter animation, specify the state of the card for the start of the transition:

.card-enter {
opacity: O0;
/* Slide from the right */
transform: scale(.8) translateX(100px);

}

5. The leave animation requires a few more rules since the play card animation is
more complex, and involves zooming the card upward:

.card-leave—-active {
/* We need different timings for the leave transition */
transition: all 1s, opacity .5s .5s;
/* Keep it in the same horizontal position */
position: absolute !important;
/* Make it painted over the other cards */
z—index: 10;
/* Unclickable during the transition */
pointer-events: none;

}

.card-leave-to {

opacity: O0;

/* Zoom the card upwards */

transform: translateX(-106px) translateY (-300px) scale(l.5);
}

This is enough to make your cards all properly animated. You can try playing and
adding cards to the hand again to see the result.

The overlays

The last UI elements we need are the overlays. The following are three of them:

e The new turn' overlay shows the name of the current player when it is their turn.
Clicking on the 'new turn' player switches to the 'last play' overlay.
¢ The 'last play' overlay shows the player what their opponent did just before. It
displays either of the following:
e The card played by the opponent during the preceding turn

¢ A reminder that their turn was skipped

[92]

Project 2 - Castle Duel Browser Game Chapter 3

e The 'game over' overlay shows whenever a player or both players lose. It displays
the names of the players with the phrase "is victorious" or "is defeated". Clicking
on the 'game over' overlay reloads the game.

All of these overlays have two things in common--they do something when the user clicks
on them, and they have a similar layout design. So, we should be smart here and structure
our components to reuse code as much as we can where it makes sense. The idea here is to
create a generic overlay component, which will take care of the click event and the layout
and three specific overlay-content components for each one of the overlays we need.

Before starting, add a new activeOverlay property to the app state in the state. js file:

// The consolidated state of our app

var state = {
// UI
activeOverlay: null,
/..

}

This will hold the name of the currently displayed overlay or will be nul1 if no overlay is
shown.

Content distribution with slots

It would be very convenient if we could put contents inside the overlay component in the
main template, like this:

<overlay>
<overlay-content-player—turn />
</overlay>

We would encapsulate additional layout and logic inside the overlay component while
still being able to put any content inside. This is done through a special element--the
<slot>.

1. Let's create our overlay component with two div elements:

Vue.component ('overlay', {
template: “<div class="overlay">
<div class="content">
<!-— Our slot will be there -->
</div>
</div>",

})

[93]

Project 2 - Castle Duel Browser Game Chapter 3

2. Add a click event listener on the .overlay div, which calls the handleClick
method:

<div class="overlay" @click="handleClick">
3. Then, add the mentioned method where we emit a custom 'close' event:
methods: {
handleClick () {
this.$emit ('close')
I
I

This event will be helpful to know when to switch from one overlay to the next at
the start of the turn.

4. Now, put a <slot> element inside the . content div:

template: “<div class="overlay" @click="handleClick">
<div class="content">
<slot />
</div>
</div>",

Now, if we put something between the overlay tags when using our component,
it will be included in the DOM and replace the <slot> tag. For example, we could
do this:

<overlay>
Hello world!
</overlay>

Also, it will render like this in the page:

<div class="overlay">
<div class="content">
Hello world!
</div>
</div>

It works with anything, so you can also put HTML or Vue components,
and it will still work the same way!

[94]

Project 2 - Castle Duel Browser Game Chapter 3

5. The component is ready to be used in the main template, so add it at the end:

<overlay>
Hello world!
</overlay>

Each of the three overlay contents will be a separate component:

e overlay-content-player-turn shows the beginning of the turn
® overlay-content-last-play displays the last card played by the opponent

e overlay-content-game-over shows when the game is over

Before diving into these, we need a bit more data about the two players in
our state.

6. Go back to the state. js file and add the following properties for each player:

// Starting stats

food: 10,

health: 10,

// Is skipping is next turn
skipTurn: false,

// Skiped turn last time
skippedTurn: false,

hand: [],

lastPlayedCardId: null,
dead: false,

You should now have two items in the players array with the same properties,
expect for the player names.

The 'player turn' overlay

The first overlay will display two different messages to the current player, depending on
whether it is skipping their turn or not. The player prop will receive the current player so
that we can access its data. We will use a v-if directive paired with a v—else directive and
the skipTurn property we just added to the players:

Vue.component ('overlay—-content-player—-turn', {
template: ~<div>
<div class="big" v-if="player.skipTurn">{{ player.name }},

your turn is skipped!</div>
<div class="big" v-else>{{ player.name }},
your turn has
come!</div>

[95]

Project 2 - Castle Duel Browser Game Chapter 3

<div>Tap to continue</div>
</div>",
props: ['player'l],
})

The 'last play’ overlay

This one is a bit more complex. We need a new function to get the last played card by a
player. In the utils. js file, add the new getLastPlayedCard function:

function getLastPlayedCard (player) {
return cards[player.lastPlayedCardId]

}

We can now use this function in a 1astPlayedCard computed property by passing the
opponent prop:

Vue.component ('overlay-content-last-play', {
template: ~<div>
<div v-if="opponent.skippedTurn">{{ opponent.name }} turn was
skipped!</div>
<template v-else>
<div>{{ opponent.name }} just played:</div>
<card :def="lastPlayedCard" />
</template>
</div>",
props: ['opponent'],
computed: {
lastPlayedCard () A
return getlastPlayedCard(this.opponent)
}!
}!
})

Note that we are directly reusing the card component we made earlier to display the card.

The 'game over' overlay

For this one, we will create another component called player-result that will show
whether a player is victorious or defeated. We will display the name of the player passed
with a prop. We will compute the result for this player with a computed property, which
we will also use as a dynamic CSS class:

Vue.component ('player—-result', {

[96]

Project 2 - Castle Duel Browser Game Chapter 3

template: “<div class="player-result" :class="result">
{{ player.name }} is
{{ result }}

</div>",

props: ['player'l],

computed: {
result () {

return this.player.dead ? 'defeated' : 'victorious'

}I

}I

})

Now, we can create the game over overlay by looping over the players props and using
the player-result component:

Vue.component ('overlay-content—-game-over', {
template: ~<div>
<div class="big">Game Over</div>
<player-result v-for="player in players" :player="player" />
</div>",
props: ['players'],
})

Dynamic component

Now, it is time to put all of these into our overlay component and use the activeOverlay
property we defined earlier.

1. Add the components and display them with the corresponding value of
activeOverlay in the main template:

<overlay v-if="activeOverlay">
<overlay-content-player—-turn

v-if="activeOverlay === 'player-turn'" />
<overlay-content-last-play
v-else-if="activeOverlay === 'last-play'" />
<overlay-content-game—-over
v-else-if="activeOverlay === 'game-over'" />
</overlay>

We will remove the overlay completely if the act iveOverlay property is
equal to null.

[97]

Project 2 - Castle Duel Browser Game Chapter 3

Before adding the props, we will need to modify the app state in the state. js
file with a few getters.

2. The first one will return the player object from the currentPlayerIndex
property:

get currentPlayer () {
return state.players[state.currentPlayerIndex]
b

3. The second one will return the opposing player index:

get currentOpponentId () {
return state.currentPlayerIndex === 0 ? 1 : 0

b
4. Finally, the third one will return the corresponding player object:

get currentOpponent () {
return state.players[state.currentOpponentId]
by

5. Now, we can add the props to the overlay contents:

<overlay v-if="activeOverlay">

<overlay-content-player-turn
v-if="activeOverlay === 'player—-turn'"
:player="currentPlayer" />

<overlay-content-last-play
v-else-if="activeOverlay === 'last-play'"
:opponent="currentOpponent" />

<overlay-content—-game—-over

v-else-if="activeOverlay === 'game-over'"
:players="players" />
</overlay>

You can test the overlays by setting the activeOverlay property in the browser

console:
state.activeOverlay = 'player-turn'
state.activeOverlay = 'last-play'
state.activeOverlay = 'game-over'
state.activeOverlay = null

[98]

Project 2 - Castle Duel Browser Game Chapter 3

If you want to test the last-play overlay, you need to specify a valid
value to the player lastPlayedCardId property, such as 'catapult' or
'farm'.

Our code is starting to be messy, with three conditionals. Thankfully, there is a
special component that can turn itself into any component--it is the component
component. You just have to set its is prop to a component name, a component
definition object, or even an HTML tag, and it will morph into it:

<component is="h1">Title</component>
<component is="overlay-content-player—-turn" />

It's a prop like any other, so we can use the v-bind directive to dynamically
change the very nature of the component with a JavaScript expression. What if we
used our activeOverlay property to do just that? Are our overlay content
components conveniently named with the same 'over-content-' prefix? Take a
look:

<component :is="'overlay-content-' + activeOverlay" />

That's it. Now, by changing the value of the activeOverlay property, we will
change the component displayed inside the overlay.

6. After adding back the props, the overlay should look like this in the main
template:

<overlay v-if="activeOverlay">
<component :is="'overlay-content-' + activeOverlay"

:player="currentPlayer" :opponent="currentOpponent"
:players="players" />
</overlay>

Don't worry, unused props won't interfere with the different overlays
workings.

[991]

Project 2 - Castle Duel Browser Game Chapter 3

The overlay animation

Like we did with the hand, we will use a transition to animate the overlay.
1. Add a transition called "zoom" around the overlay component:

<transition name="zoom">
<overlay v-if="activeOverlay">

<component :is="'overlay-content-' + activeOverlay"
:player="currentPlayer" :opponent="currentOpponent"
:players="players" />
</overlay>
</transition>

2. Add the following CSS rules in the transition.css file:

.zoom—-enter—active,
.zoom—-leave—active {
transition: opacity .3s, transform .3s;

}

.zoom—enter,

.zoom—-leave-to {
opacity: O0;
transform: scale(.7);

}

This is a simple animation that will zoom out the overlay while fading it out.

Key attribute

For now, if you try the animation in the browser, it should only work in two cases:

e When you don't have any overlay displayed, and you set one
e When you have an overlay shown and you set activeOverlay to null to hide it

If you switch between the overlays, the animation will not work. This is because of the way
Vue updates the DOM; as we saw earlier in the The key special attribute section, it will reuse
DOM elements as much as possible to optimize performance. In that case, we will need to
use the key special attribute to give Vue a hint that we would like to treat the different
overlays as separate elements. So, when we transition from one overlay to the other, both
will be present in the DOM, and the animations can be played.

[100]

Project 2 - Castle Duel Browser Game Chapter 3

Let's add the key to our overlay component so that Vue will treat it as multiple separate
elements when we change the activeOverlay value:

<transition name="zoom">
<overlay v-if="activeOverlay" :key="activeOverlay">

<component :is="'overlay-content-' + activeOverlay"
:player="currentPlayer" :opponent="currentOpponent" :players="players" />
</overlay>
</transition>

Now, if we set activeOverlay to 'player—turn', the overlay will have a key of
'player—turn'. Then, if we set activeOverlay to 'last-play', an entirely new overlay
will be created with a key of '1last-play’', and we can animate the transition between the
two. You can try this in the browser by setting different values to state.activeOverlay.

The overlay background

At this point, there is something missing--the overlay background. We can't include it
inside the overlay component because it would be zoomed during the animation--this
would be quite awkward. Instead, we will use the simple fade animation we have created
already.

In the main template, add a new div element with the overlay-background class just
before the zoom transition and the overlay component:

<transition name="fade">
<div class="overlay-background" v-if="activeOverlay" />
</transition>

With the v-if directive, it will only be displayed when any overlay is displayed.

Game world and scenery

We are mostly done with the Ul elements, so we can now go into the game scenery
components. We will have some new components to do--the player castles, a health and
food bubble for each one, and some animated clouds in the background for good measure.

[101]

Project 2 - Castle Duel Browser Game Chapter 3

Create a new world. js file in the components folder, and include it in the page:
<I== .0 ==
<script src="components/ui.js"></script>

<script src="components/world.js"></script>
<script src="main.js"></script>

We will start with the castles.

The castles

This one is actually pretty simple since it consists of only two images and a castle-banners
component that will take care of the health and food display:

1. In the world. js file, create a new castle component with two images that accepts
aplayers and an index prop:

Vue.component ('castle', {

template: “<div class="castle" :class="'player-' + index">

<!-- Later, we will add a castle-banners component here -->

</div>",

props: ['player', 'index'],

})

For this component, there is a castle and a ground image for each player;
that means four images in total. For example, for the player at index 0,
there are castle0.svg and the ground0. svg images.

2. In the main template, just below the top-bar component, create a new div
element with the wor1d CSS class, loop over the players to display the two
castles, and add another div element with the 1and class:

<div class="world">
<castle v-for="(player, index) in players" :player="player"
:index="index" />
<div class="land" />
</div>

[102]

Project 2 - Castle Duel Browser Game Chapter 3

In the browser, you should see one castle for each player, as follows:

Anne of Cleves William the Bald

Quick Repair Poison Catapult Repair
Spend 1 Food #

Spend 3 Food *

Repéir 3 Damage = Your opponent lose

3 Food # Do nothing Spend 2 Food # Repair 5 Damage =
Deal 2 Damage = Skip your next turn
This is not without Send someone you trust

consequences on the poison the enemy Pray in the chapel, and
moral and energy! granary. hope someone will listen.

Castle banners

The castle banners will display the health and food for the castle. There will be two
components inside the castle-banners component:

¢ A vertical banner whose height changes, depending of the amount of the stat
¢ A bubble with the actual number displayed

[103]

Project 2 - Castle Duel Browser Game Chapter 3

It will look like this:

1. First, create a new castle-banners component with only the stat icons and a
player prop:

Vue.component ('castle-banners', {

template: “<div class="banners">
<!-- Food -—>

<!-— Bubble here -->
<!-- Banner bar here -->
<!-- Health —-—>

<!-— Bubble here -->
<!-- Banner bar here -->
</div>",
props: ['player'l],

})

[104]

Project 2 - Castle Duel Browser Game Chapter 3

2. We also need two computed properties that calculate the health and food ratios:

computed: {
foodRatio () {
return this.player.food / maxFood

I
healthRatio () {
return this.player.health / maxHealth

by

The maxFood and maxHealth variables are defined at the beginning of the
state.js file.

3. In the castle component, add the new castle-banners component:

template: “<div class="castle" :class="'player-' + index">

<castle-banners :player="player" />

</div>",

Food and health bubbles

This component contains an image and a text that displays the current amount for either the
food or health of the castle. Its position will change depending on this amount--it will go up
as the amount diminishes and will go down when it replenishes.

We will need three props for this component:

e type is either food or health; it will used for the CSS class and for the image path
¢ value is the amount displayed in the bubble
e ratio is the amount divided by the maximum amount

We also need a computed property to calculate the vertical position of the bubble with the
ratio prop. The position will range from 40 pixels to 260 pixels. So, the position value will

be given by this expression:

(this.ratio * 220 + 40) * state.worldRatio + 'px'

[105]

Project 2 - Castle Duel Browser Game Chapter 3

Remember to multiply every position or size with the wor1dRatio value,
so the game takes into account the window size (it gets bigger if the
window is bigger, or vice versa).

1. Let's write our new bubble component:

Vue.component ('bubble', {
template: “<div class="stat-bubble" :class="type + '-bubble'"
:style="bubbleStyle">

<div class="counter">{{ value }}</div>

</div>",
props: ['type', 'value', 'ratio'],
computed: {

bubbleStyle () |

return {
top: (this.ratio * 220 + 40) * state.worldRatio + 'px',
}
b
b
})

It has a root div element with the stat-bubble CSS class, a dynamic class (either
'food-bubble' or 'health-bubble', depending on the type prop value) plus
a dynamic CSS style we set with the bubbleStyle computed property.

It contains an SVG image, which is not the same for food and health, and a div
element with the counter class that displays the amount.

2. Add a food and an health bubble to the castle-banners component:

template: “<div class="banners">
<!-- Food —-—>

<bubble type="food" :value="player.food" :ratio="foodRatio" />
<!-- Banner bar here —-->

<!-— Health --—>

<bubble type="health" :value="player.health"
:ratio="healthRatio" />
<!-— Banner bar here -->
</div>",

[106]

Project 2 - Castle Duel Browser Game Chapter 3

Banner bars

The other component we need is a vertical banner hanging up on one of the castle's towers.
Its length will change depending on the amount of food or health. This time, we will create
a dynamic SVG template so that we can modify the height of the banner.

1. First, create the component with two props (the color and the ratio) and the
height computed property:

Vue.component ('banner-bar', {

props: ['color', 'ratio'],
computed: {
height () {

return 220 * this.ratio + 40

}I
}I
})

For now, we defined our templates in two different ways--we either used the
HTML of our page or we set a string into the template option of our
components. We will use another method of writing component templates--a
special script tag in the HTML. It works by writing the template inside this script
tag with a unique ID and referencing this ID when defining the component.

2. Open the banner-template. svg file, which contains the SVG markup of the
banner image we will use as a dynamic template. Copy the content of the file.

3. In the index.html file, after the <div id="app"> element, add a script tag
with the text /x-template type and the banner ID, and paste the svg content
inside:

<script type="text/x-template" id="banner">
<svg viewBox="0 0 20 260">
<path :d=""m 0,0 20,0 0,${height} -10,-10 -10,10 z'"
:style=""fill:${color};stroke:none; " />

</svg>
</script>

As you can see, this is a standard template with all the syntax and
directives available to use. Here, we use the v-bind directive shorthand
twice. Note that you can use SVG markup inside all of your Vue
templates.

[107]

Project 2 - Castle Duel Browser Game Chapter 3

4. Now, back in our component definition, add the template option with the ID of
our script tag template preceded by a hashtag:

Vue.component ('banner-bar', {
template: '#banner’,
//

)

Done! The component will now look up for a scrip tag template with the banner
ID in the page and will use it as its template.

5. In the castle-banners component, add the two remaining banner-bar
components with the corresponding colors and ratios:

template: “<div class="banners">
<!-- Food —-—>

<bubble type="food" :value="player.food" :ratio="foodRatio" />

<banner-bar class="food-bar" color="#288339" :ratio="foodRatio"
/>
<!--— Health --—>

<bubble type="health" :value="player.health"
:ratio="healthRatio" />
<banner-bar class="health-bar" color="#9b2e2e"
:ratio="healthRatio" />
</div>",

You should now see the banners that hang up on the castles and shrink if you
change the food and health values.

Animating a value

These banners would be prettier if we could animate them when they shrink or grow. We
can't rely on CSS transitions since we need to dynamically change the SVG path, so we need
another way--we will animate the value of the height property used in the template.

1. First, let's rename our template computed property to targetHeight:

computed: {
targetHeight () {
return 220 * this.ratio + 40
}I
}I

[108]

Project 2 - Castle Duel Browser Game Chapter 3

This targetHeight property will be calculated only once whenever the ratio
changes.

2. Add anew height data property that we will be able to animate each time
targetHeight changes:

data () {
return |
height: O,
}
}!

3. Initialize the value of height with the value of targetHeight when the
component has been created. Do this in the created hook:

created () {
this.height = this.targetHeight
by

To animate the height value, we will use the popular TWEEN. js library, which is
already included in the index.html file. This library works by creating a new
Tween object that takes the starting values, an easing function, and the ending
values. It provide callbacks such as onUpdate that we will use to update the
height property from the animation.

4. We would like to start the animation whenever the targetHeight property
changes, so add a watcher with the following animation code:

watch: {
targetHeight (newValue, oldValue) {
const vm = this

new TWEEN.Tween ({ value: oldValue })
.easing (TWEEN.Easing.Cubic.InOut)
.to({ value: newValue }, 500)
.onUpdate (function () {

vm.height = this.value.toFixed(0)
)
.start ()
I
I

The this context in the onUpdate callback is the Tween object and not the
Vue component instance. That's why we need a good old temporary
variable to hold the component instance this (here, that is the vm
variable).

[109]

Project 2 - Castle Duel Browser Game Chapter 3

5. We need one last thing to make our animation work. In the main. js file, request
the paint frames from the browser to make the TWEEN. js library tick, thanks to
the browser's requestAnimationFrame function:

// Tween.js
requestAnimationFrame (animate) ;

function animate (time) {
requestAnimationFrame (animate) ;
TWEEN.update (time) ;

}

If the tab is in the background, the requestAnimationFrame function
will wait for the tab to become visible again. This means the animations
won't play if the user doesn't see the page, saving the computer resources
and battery. Note that it is also the case for CSS transitions and
animations.

Now when you change the food or the health of a player, the banners will
progressively shrink or grow.

The animated clouds

To add some life to the game world, we will create a few clouds that will slide in the sky.
Their position and animation duration will be random and they will go from the left to the
right of the window.

1. Inthe world.js file, add the minimum and maximum durations for the cloud
animation:

const cloudAnimationDurations = {
min: 10000, // 10 sec
max: 50000, // 50 sec

[110]

Project 2 - Castle Duel Browser Game Chapter 3

2. Then, create the cloud component with an image and a t ype prop:

Vue.component ('cloud', {
template: “<div class="cloud" :class="'cloud-' + type" >

</div>",
props: ['type'l,

)

There will be five different clouds, so the type prop will range from 1 to 5.

3. We will need to change the z-index and transform CSS properties of the
component with a reactive style data property:

data () {
return A
style: {
transform: 'none',
zIndex: 0,

by
}
by

4. Apply these style properties with the v-bind directive:

<div class="cloud" :class="'cloud-' + type" :style="style">
5. Let's create a method to set the position of the cloud component using the
transform CSS property:

methods: {
setPosition (left, top) {
// Use transform for better performance

this.style.transform = "“translate(${left}px, ${toplpx)"
I

[111]

Project 2 - Castle Duel Browser Game Chapter 3

6. We need to initialize the horizontal position of the cloud when the image is
loaded, so that it's outside of the viewport. Create anew initPosition that uses
the setPosition method:

methods: {
//
initPosition () {

// Element width
const width = this.$el.clientWidth
this.setPosition (-width, 0)
}I
}

7. Add an event listener on the image with the v-on directive shorthand that listens
to the 1oad event and calls the initPosition method:

The animation

Now, let's move on to the animation itself. Like we did for the castle banners, we will use
the TWEEN. js library:

1. First, create a new startAnimation method that calculates a random animation
duration and accepts a delay parameter:

methods: {
//

startAnimation (delay = 0) {
const vm = this
// Element width
const width = this.$el.clientWidth

// Random animation duration
const { min, max } = cloudAnimationDurations
const animationDuration = Math.random() * (max — min) + min

// Bing faster clouds forward
this.style.zIndex = Math.round(max - animationDuration)
// Animation will be there

b

[112]

Project 2 - Castle Duel Browser Game Chapter 3

The faster a cloud is, the lower its animation duration will be. Faster

clouds will be displayed before slower clouds, thanks to the z-index CSS
property.

2. Inside the startAnimation method, calculate a random vertical position for the
cloud and then create a Tween object. It will animate the horizontal position with

a delay and set the position of the cloud each time it updates. When it completes,
we will start another animation with a random delay:

// Random position

const top = Math.random() * (window.innerHeight * 0.3)

new TWEEN.Tween ({ value: -width })

.to({ value: window.innerWidth },
.delay (delay)

.onUpdate (function () {
vm.setPosition(this.value, top)

})

.onComplete (() => {

// With a random delay
this.startAnimation (Math.random() * 10000)

animationDuration)

})
.start ()

3. In the mounted hook of the component, call the startAnimation method to
begin the initial animation (with a random delay):

mounted () {
// We start the animation with a negative delay
// So it begins midway
this.startAnimation (-Math.random() *
cloudAnimationDurations.min)

Hy
Our cloud component is ready.

4. Add some clouds to the main template in the wor1d element:

<div class="clouds">

<ecloud v-for="index in 10"

:type="(index - 1) % 5 + 1" />
</div>

[113]

Project 2 -

Castle Duel Browser Game Chapter 3

use the % operator to return the division remainder for 5.

9 Be careful to pass a value to the type prop ranging from 1 to 5. Here, we

Here is what it should look like:

Gameplay

All of our components are done! We only need to add some gameplay logic for the app to
be playable. When the game begins, each players draws their initial hand of cards.

Then, each player's turn follows these steps:

1.
2.

ARSI

The player-turn overlay is displayed so that the player knows it's their turn.
The 1ast-play overlay shows them what the other player played during the last
run.

The player plays a card by clicking on it.

The card is removed from their hand and its effects applied.

We wait a bit so that the player can see these effects in action.

Then, the turn ends, and we switch the current player to the other one.

[114]

Project 2 - Castle Duel Browser Game Chapter 3

Drawing cards

Before drawing the cards, we will need to add two properties to the app state in the
state. js file:

var state = {
/..
drawPile: pile,

discardPile: {},
t

The drawPile property is the pile of cards that can be drawn by the players. It is initialized
with the pile object defined in the cards. js file. Each key is the ID of a card definition,
and the value is the amount of cards of this type in the pile.

The discardpile property is the equivalent of the drawPile property, but it serves a
different purpose--all the cards played by the player will be removed from their hand and
put into the discard pile. At some point, if the draw pile is empty, it will be refilled with the
discard pile (which will be emptied).

The initial hand

At the beginning of the game, each player draws some cards.
1. Inthe utils. js file, there is a function that draws the hand of a player:
drawInitialHand (player)

2. Inthemain. js file, add a new beginGame function that calls the
drawInitialHand function for each player:

function beginGame () {
state.players.forEach (drawInitialHand)
}

3. Call this inside the mounted hook of our main component in the main. js file,
when the app is ready:

mounted () {
beginGame ()

}l

[115]

Project 2 - Castle Duel Browser Game Chapter 3

The hand

To display the cards in the current player hand, we need a new getter in the app state:
1. Add the currentHand getter to the state objectin the state. js file:

get currentHand () {
return state.currentPlayer.hand
by

2. We can now remove the testHand property and replace it with currentHand in
the main template:

<hand v-if="!activeOverlay" :cards="currentHand" @card-
play="testPlayCard" />

3. You can also remove the createTestHand method and this created hook we
wrote on the main component for testing purposes:

created () {
this.testHand = this.createTestHand()

by

Playing a card

Playing the card is split into the following three steps:

1. We remove the card from the player's hand and add it to the pile. This triggers
the card animation.

2. We wait for the card animation to finish.
3. We apply the effect of the card.

[116]

Project 2 - Castle Duel Browser Game Chapter 3

No cheating allowed
When playing, cheating shouldn't be allowed. When writing the gameplay logic, we should
keep this in mind:

1. Let's start by adding a new canPlay property to the app state in the state. js
file:

var state = {

VA
canPlay: false,

}
This will prevent the player from playing a card, if it has been already played
during their turn--we have a lot of animation and waiting going on, so we don't
want them to cheat.

We will use it both when a player plays a card to check whether they played one
already, and also in the CSS to disable mouse events on the hand cards.

2. So, add a cssClass computed property in the main component that will add the
can-play CSS class if the canPlay property is true:

computed: {
cssClass () {
return {
'can-play': this.canPlay,
}
}I
}I

3. And add a dynamic CSS class on the root div element in the main template:

<div id="#app" :class="cssClass">

[117]

Project 2 - Castle Duel Browser Game Chapter 3

Removing the card from the hand
When the card is played, it should be removed from the current player hand; follow these

steps to do so:

1. Create a new playCard function in the main. js file that takes a card as an

argument, checks whether the player can play a card, and then removes the card
from their hand to put it into the discard pile with the addCardToPile function

(defined in the utils. js file):

function playCard (card) {
if (state.canPlay) {
state.canPlay = false
currentPlayingCard = card

// Remove the card from player hand

const index = state.currentPlayer.hand.indexOf (card)

state.currentPlayer.hand.splice (index, 1)

// Add the card to the discard pile
addCardToPile (state.discardPile, card.id)

We store the card the player played in the currentPlayingCard variable,
because we need to apply its effect later.

2. In the main component, replace the testPlayCard method with a new
handlePlayCard one that calls the playCard function:

methods: {
handlePlayCard (card) {
playCard(card)
}I
}I

3. Don't forget to change the event listener on the hand component in the main
template:

<hand v-if="'!activeOverlay" :cards="currentHand" @card-

play="handlePlayCard" />

[118]

Project 2 - Castle Duel Browser Game Chapter 3

Waiting for the card transition to end

When the card is played, which means removed from the hand card list, it triggers a leaving
animation. We would like to wait for it to finish before continuing. Fortunately, the
transitionand transition-group components emit events.

The one we need here is the 'after-leave' event, but there are other events
corresponding to each phase of the transitions--'before-enter', 'enter"', 'after-

enter', and so on.

1. In the hand component, add an event listener of the type 'after-leave':

<transition-group name="card" tag="div" class="cards" @after-
leave="handlelLeaveTransitionEnd">

2. Create the corresponding method that emits a ' card-leave-end' event to the
main template:

methods: {
//

handleLeaveTransitionEnd () {
this.$emit ('card-leave—end')

by
by

3. In the main template, add a new event listener of the 'card-leave-end' type
on the hand component:

<hand v-if="!activeOverlay" :cards="currentHand" @card-
play="handlePlayCard" @card-leave-—-end="handleCardLeaveEnd" />

4. Create the corresponding method:

methods: {
//
handleCardLeaveEnd () {

console.log('card leave end')

}l
}

We will write its logic a bit later.

[119]

Project 2 - Castle Duel Browser Game Chapter 3

Applying the card effect

After the animation is played, the card effects will be applied to the players. For example, it
could increase the current player's food or decrease the opponent's health.

1. Inthemain. js file, add the applyCard function that uses the
applyCardEffect defined in the utils. s file:

function applyCard () {
const card = currentPlayingCard

applyCardEffect (card)
}

Then, we will wait for some time so that the player can see the effects being
applied and understand what is going on. Then, we will check whether at least
one player is dead to end the game (thanks to the checkPlayerLost function
defined in utils. js) or continue to the next turn.

2. In the applyCard function, add the following corresponding logic:

// Wait a bit for the player to see what's going on
setTimeout (() => {
// Check if the players are dead
state.players.forEach (checkPlayerLost)

if (isOnePlayerDead()) A
endGame ()

} else {
nextTurn ()

}
}, 700)

3. For now, add the empty next Turn and endGame functions just after the
applyCard one:

function nextTurn () |
// TODO
}

function endGame () <
// TODO
}

[120]

Project 2 - Castle Duel Browser Game Chapter 3

4. We can now change the handleCardLeaveEnd method in the main component
to call the applyCard function we just created:

methods: {
//

handleCardLeaveEnd () |

applyCard ()
I

The next turn

The nextTurn function is quite simple--we will increment the turn counter by one, change
the current player, and display the player-turn overlay.

Add the corresponding code into the nextTurn function:

function nextTurn () {
state.turn ++
state.currentPlayerIndex = state.currentOpponentId
state.activeOverlay = 'player-turn'
}
New turn

We also need some logic when a turn begins after the overlays:

1. First is the newTurn function that hides any active overlay; it either skips the turn
of the current player because of a card or starts the turn:

function newTurn () <
state.activeOverlay = null
if (state.currentPlayer.skipTurn) {
skipTurn ()
} else {
startTurn ()

}

[121]

Project 2 - Castle Duel Browser Game Chapter 3

A player will have their turn skipped if its skipTurn property is true--this
property will be set by some of the cards. They also have a skippedTurn
property, which we will need to show the next player that their opponent has
skipped their last turn in the last-play overlay.

2. Create the skipTurn function that sets skippedTurn to true and the skipTurn
property to false and go directly to the next turn:

function skipTurn () {
state.currentPlayer.skippedTurn = true
state.currentPlayer.skipTurn = false
nextTurn ()

}

3. Create the startTurn function, which reset the skippedTurn property of the
player and makes them draw a card if it's their second turn (so that they always
have five cards at the beginning of their turn):

function startTurn () {
state.currentPlayer.skippedTurn = false
// If both player already had a first turn
if (state.turn > 2) {
// Draw new card
setTimeout (() => {
state.currentPlayer.hand.push (drawCard())
state.canPlay = true
}, 800)
} else {
state.canPlay = true
}
}

It is at this moment that we can allow the player to play a card using the canPlay
property.

[122]

Project 2 - Castle Duel Browser Game Chapter 3

Overlay close actions

Now, we will need to handle the action triggered when the user clicks on each overlay. We

will create a map, with the key being the type of overlay and the value a function called
when the action is triggered.

1. Additinthemain. js file:

var overlayCloseHandlers = {
'player—-turn' () {
if (state.turn > 1) {
state.activeOverlay = 'last-play'
} else {
newTurn ()
}
}I
'last-play' () {
newTurn ()
}I
'game—over' () {

// Reload the game
document.location.reload ()
I

For the player-turn overlay, we only switch to the last-play overlay if
it's the second or more turn, since at the start of the very first turn, the
opponent does not play any card.

2. In the main component, add the handleOverlayClose method that calls the

action function corresponding to the currently active overlay with the
activeOverlay property:

methods: {
/] ...
handleOverlayClose () {

overlayCloseHandlers[this.activeOverlay] ()
Hy
Hy

[123]

Project 2 - Castle Duel Browser Game Chapter 3

3. On the overlay component, add an event listener of the 'close’ type that will be
triggered when the user clicks on the overlay:

<overlay v-if="activeOverlay" :key="activeOverlay"
@close="handleOverlayClose">

Game Over!

Finally, set the activeOverlay property to 'game-over' inside the endGame function:

function endGame () {
state.activeOverlay = 'game-over'

}

This will display the game-over overlay if at least one player is dead.

Summary

Our card game is finished. We saw a lot of new features provided by Vue that enable us to
create rich and interactive experiences easily. However, the one most important thing we
introduced and used in this chapter is the component-based approach to web application
development. This helps us develop larger applications by splitting our frontend logic into
small, isolated, and reusable components. We covered how to make components
communicate with each other, from parent to children with props and from child to parent
with custom events. We also added animations and transitions (with the <transition>
and <transition-group> special components) to the game to make it more alive. We
even manipulated SVG inside our templates and dynamically displayed a component with
the special <component> component.

In the next chapter, we will set up a more advanced application with Vue component files,
among other features that will help us build even larger applications.

[124]

Advanced Project Setup

After this chapter, we will begin building more complex applications, and we will need
some additional tools and libraries. We will cover the following topics:

e Setting up our development environment
¢ Using vue-cli to scaffold Vue applications
¢ Writing and using Single-File Components

Setting up our development environment

To create more complex Single-Page Applications, it is recommended to use a few tools to
ease the development. In this section, we will install them to have a good development
environment ready. You need to have both Node.js and npm installed on your computer.
Ensure that you have at least Node 8.x, but the latest Node version is recommended.

Advanced Project Setup Chapter 4

Installing vue-cli, the official command-line tool

The first package we will need is vue-cli, which is a command-line tool that will help us
create Vue applications:

1. Enter this command in the terminal, and it will install vue-cli and save it as a
global package:

npm install -g vue-cli

You may need to run this command as an administrator.

2. To test whether vue-cli is working, print its version with the following command:

vue —--version

Code editors

Any text editor will do, but I recommend using Visual Studio Code (https://code.
visualstudio.com/) or Atom (https://atom.io/). For Visual Studio Code, you need the
vetur extension from octref (https://github.com/vuejs/vetur) and for Atom, the
language-vue extension from hedefalk (https://atom.io/packages/language-vue).

Recent versions of Jetbrains' WebStorm IDE support Vue out of the box.

You can also install the extensions that add support to the preprocessor languages such as
Sass, Less, or Stylus.

Our first full-blown Vue application

The previous applications were both made in quite an old-school way, with script tags
and simple JavaScript. In this section, we will discover new ways of creating Vue
applications with some powerful features and tools. In this part, we will create a mini
project to demonstrate the new tools we will use as we move on.

[126]

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://atom.io/
https://github.com/vuejs/vetur
https://github.com/vuejs/vetur
https://github.com/vuejs/vetur
https://github.com/vuejs/vetur
https://github.com/vuejs/vetur
https://github.com/vuejs/vetur
https://github.com/vuejs/vetur
https://github.com/vuejs/vetur
https://github.com/vuejs/vetur
https://github.com/vuejs/vetur
https://github.com/vuejs/vetur
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue
https://atom.io/packages/language-vue

Advanced Project Setup Chapter 4

Scaffolding the project

The vue-cli tool enables us to create ready-to-use app skeletons to help us get started on a
new project. It works with a project template system that can ask you some questions to

customize the skeleton to your needs:

1. List the official project templates with the following command:

vue list

Here's the list displayed in the terminal:

Available official templates:

browserify - A full-featured Browserify + vueify setup with hot-reload, linting & unit testing.
browserify-simple - A simple Browserify + vueify setup for quick prototyping.

simple - The simplest possible Vue setup in a single HTML file

webpack - A full-featured Webpack + vue-loader setup with hot reload, linting, testing & css extraction.
webpack-simple - A simple Webpack + vue-loader setup for quick prototyping.

There are three main types of official templates:

e simple: Uses no build tools
e webpack: Uses the very popular webpack bundler (recommended)

e browserify: Uses the browserify build tool

The recommended official template is the webpack template. It features all
you need to create a full-scale SPA with Vue. For the purpose of this book,
we will use webpack-simple and introduce features progressively.

To create a new application project using one of these templates, use the npm
init command:

vue init <template> <dir>
We will use the webpack-simple official template in a new demo folder:
2. Run the following command:

vue init webpack-simple demo

[127]

Advanced Project Setup Chapter 4

This project template features a ready-to-use minimal webpack configuration. The
command will ask a few questions.

3. Answer the questions of vue-cli like this:

Project name demo

Project description Trying out Vue.js!
Author Your Name <your-mail@mail.com>
License MIT

Use sass? No

VIV N VS

Vue-cli should have now created a demo folder. It has a package. json file and
other configuration files already filled for us. The package. json file is very
important; it holds the main information about the project; for example, it lists all
the packages that the project depends on.

4. Go to the newly created demo folder and install the default dependencies already
declared in the package. json file added by the webpack-simple template
(such as vue and webpack):

cd demo
npm install

Our app is now set up!

From now on, we will fully use the ECMAScript 2015 syntax and the
import/export keywords to use or expose modules (which means files
that export JavaScript elements).

Creating the app

Any Vue app need a JavaScript entry file where the code will start:

1. Remove the content of the src folder.

2. Create a new JavaScript file called main. js with the following content:
import Vue from 'vue'

new Vue ({

el: '#app',

render: h => h('div', 'hello world'),
})

[128]

Advanced Project Setup Chapter 4

First, we import the Vue core library into the file. Then, we create a new root Vue
instance that will attach to the element of id app in the page.

A default index.html file is provided by vue-cli for the page with an
empty <div id="app"></div> tag. You can edit it to change the page
HTML to your liking.

Finally, we display a div element containing the 'hello world' text, thanks to
the render option we will introduce in the "Render functions" section.

Running our application

Run the dev npm script generated by vue-cli to start the app in development mode:
npm run dev

This will launch a web app on a web server port. The terminal should display that the
compilation was successful and what URL to use to access the app:

Open this URL in your browser to see the result:

[Vue App X
< C | ® localhost:4000

hello world

[129]

Advanced Project Setup Chapter 4

Render functions

Vue uses a virtual DOM implementation that consists of a tree of elements with JavaScript
objects. It then applies the virtual DOM to the real browser DOM by computing the
differences between the two. This helps avoid DOM operations as much as possible since
they are usually the main performance bottleneck.

Actually, when you use templates, Vue will compile them into render
functions. If you need the full power and flexibility of JavaScript, you can
directly write the render functions yourself, or write JSX, which will be
discussed later.

A render function returns a small part of that tree, that is specific to its component. It uses
the createElement method, which is passed as the first argument.

By convention, h is an alias of createElement, which is very common
and needed to write JSX. It comes from the name of this technique
consisting of describing HTML with JavaScript--Hyperscript.

The createElement (or h) method takes up to three arguments:

1. The first one is the type of the element. It can be an HTML tag name (such as
'div'), a component name registered in the application, or directly a component
definition object.

2. The second argument is optional. It is the data object that defines attributes,
props, event listeners, and the like.

3. The third argument is optional too. It is either a simple plain text, or an array of
other elements created with h.

Consider the following render function as an example:

render (h) {

return h('ul', { 'class': 'movies' }, [
h('li', { 'class': 'movie' }, 'Star Wars'),
h('li', { 'class': 'movie' }, 'Blade Runner'),

1
}

[130]

Advanced Project Setup Chapter 4

It will output the following DOM in the browser:

<ul class="movies">
<li class="movie">Star Wars
<li class="movie">Blade Runner

We will cover render functions in further detail in chapter 6, Project 4 - Geolocated Blog.

Configuring babel

Babel is a very popular tool that compiles JavaScript code so that we can use new features in
older and current browsers (such as JSX or arrow functions). It is recommended to use babel
in any serious JavaScript project.

By default, the webpack-simple template comes with a default babel configuration, which
uses the env babel preset that supports all the stable JavaScript version from ES2015. It also
includes another babel preset called stage-3, which supports the upcoming JavaScript
features such as the async/await keywords and the object spread operator that are
commonly used in the Vue community.

We will need to add a third preset specific to Vue, which will add support for JSX (we will
need it in the 'JSX' section later in the chapter).

We also need to include the polyfills provided by babel so that new features such as
Promise and generators work in the older browsers.

A polyfill is code that checks whether a feature is available in the browser,
and if not, it implements this feature so that it works like it is native.

Babel Vue preset

We will now install and use the babel-preset-vue in the Babel configuration of our app.
1. So first, we need to install this new preset in the dev dependencies:

npm i -D babel-preset-vue

[131]

Advanced Project Setup Chapter 4

The main babel configuration is done in the .babelrc JSON file already
present in the project root.

This file may be hidden in your file explorer, depending on the system (its

name starts with a dot). However, it should be visible in your code editor
if it has a file tree view.

2. Open this .babelrc file and add the vue preset to the corresponding list:

{

"presets": [
["env", { "modules": false }],

"stage-3",
n vue n

Polyfills

Let's also add the Babel polyfills to use new JavaScript features in older browsers.
1. Install the babel-polyfill package in your dev dependencies:
npm i -D babel-polyfill
2. Import it at the beginning of the src/main. js file:
import 'babel-polyfill'

This will enable all the necessary polyfills for the browser.

Updating the dependencies

After the project has been scaffolded, you may need to update the packages that it uses.

[132]

Advanced Project Setup Chapter 4

Updating manually

To check whether there are new versions available of the packages used in the project, run
this command in the root folder:

npm outdated

If new versions are detected, a table is displayed:

The wanted column is the version number compatible with the version range specified in
the package. json file. To learn more about this, visit the npm documentation at http

s://docs.npmijs.com/getting-started/semantic-versioning.

To update a package manually, open the package . json file and locate the corresponding
line. Change the version range and save the file. Then, run this command to apply the
changes:

npm install

might be breaking changes or improvement you will be happy to know

Don't forget to read the change logs of the packages you update! There
8 about.

Updating automatically

To update the packages automatically, use this command in the root folder of the project:

npm update

specified in the package. json file. If you want to update packages to

This command will only update the versions compatible with those
0 other versions, you need to do it manually.

[133]

https://docs.npmjs.com/getting-started/semantic-versioning
https://docs.npmjs.com/getting-started/semantic-versioning

Advanced Project Setup Chapter 4

Updating Vue

When you update the vue package containing the core library, you should also update the
vue-template-compiler package. It is the package that compiles all your component
templates when using webpack (or another build tool).

you use vue 2.5.3, then vue-template-compiler should also be at

Both of these packages must always be at the same version. For example, if
0 version 2.5. 3.

Building for production

When it will be time to put your app into production on a real server, you will need to run
this command to compile your project:

npm run build

By default, when using the webpack-simple template, it will output the JavaScript files
into a /dist folder in the project. You will only need to upload this folder and the
index.html file that is present in the root folder. You should have the following file tree on
your server:

— index.html
- favicon.png
- [dist] - build.js
L build.map.js

Single-File Components

In this section, we will introduce an important format widely used in the creation of real
production Vue apps.

Vue has its own format call Single-File Component (SFC). This format was created by the
Vue team, and the file extension is . vue. It allows you to write one component per file, with
both the template, and the logic and styling of this component in one place. The main
advantage here is that each component is clearly self-contained, more maintainable, and
easily shared.

[134]

Advanced Project Setup Chapter 4

An SFC describes a Vue component with an HTML-like syntax. It can contain three types of
root blocks:

e <template>, which describes the template of the component with the template
syntax we already used
e <script>, which contains the JavaScript code of the component

e <style>, which contains the style used by the component

Here's an example of an SFC:

<template>
<diwv>
<p>{{ message }}</p>
<input v-model="message"/>
</div>
</template>

<script>
export default {
data () {
return {
message: 'Hello world',
}
}I
}
</script>

<style>

p {
color: grey;

t
</style>
Let's try this component now!

1. Put the above component source in a new Test . vue file in the src folder.
2. Edit the main. js file and import the SFC using the import keyword:

import Test from './Test.vue'

[135]

Advanced Project Setup Chapter 4

3. Remove the render option and instead, copy the definition of the Test
component with the object spread operator:

new Vue ({
el: '#app',
...Test,

)

In the preceding snippet, I demonstrated another way to add the root
component to the app--using the JavaScript Spread operator--so the

. . . App expression will copy the properties to the app definition object.
The main advantage is that we won't have a useless top component in the
dev tools anymore; it will be our direct root component now.

4. Go ahead and open the URL displayed in the terminal to see the result:

D Vue App x
< C | @ localhost:4000
Hello world

Hello world

Template

The <template> tag contains the template of the component. Like earlier, it is HTML with
the Vue special syntax (directives, text interpolation, shorthands, and so on).

Here's an example of a <template> tag in an SFC:

<template>
<ul class="movies">
<li v-for="movie of movies" class="movie">
{{ movie.title }}
</1li>

</template>

[136]

Advanced Project Setup Chapter 4

In this example, the template of our component will consist of a ul element containing a list
of 1i elements displaying the titles of the movies.

If you don't put a <template> tag in your SFC, you will need to write a
render function or your component won't be valid.

Using Pug
Pug (formerly Jade) is a language that compiles to HTML. We can use it inside our
<template> tag with the lang attribute set to "pug":

<template lang="pug">
ul.movies
li.movie Star Wars
li.movie Blade Runner
</template>

To compile the Pug code in our SFC, we need to install these packages:

npm install —--save-dev pug pug-loader

Packages that are needed for the development are called development
dependencies and should be installed with the --save-dev flag. The
direct dependencies that the app requires to run (for example, a package
to compile markdown to HTML) should be installed with the —-save flag.

Script

The <script> tag contains the JavaScript code associated with the component. It should
export the component definition object.

Here's an example of a <script> tag:

<script>
export default {
data () {
return <
movies: [
{ title: 'Star Wars' },
{ title: 'Blade Runner' },
] ’

[137]

Advanced Project Setup Chapter 4

}
b
}
</script>

In this example, the component will have a data hook returning an initial state with a
movies array.

The <script> tagis optional if you don't need any options in the
component options, which defaults to an empty object.

JSX

JSX is a special notation used inside the JavaScript code to express HTML markup. It makes
the code responsible for describing the view closer to the pure HTML syntax, while still
having the full power of JavaScript available.

Here's an example of a render function written with JSX:

<script>
export default {
data () {
return {
movies: [
{ title: 'Star Wars' },
{ title: 'Blade Runner' },
]I
}
}I
render (h) {
const itemClass = 'movie'
return <ul class='movies'>
{this.movies.map (movie =>
<1li class={ itemClass }>{ movie.title }</1li>
) }

}I
}

</script>

[138]

Advanced Project Setup Chapter 4

You can use any JavaScript expression inside single brackets.

As you can see in this example, we can use any JavaScript code to compose our view. We
can even use the map method of the movies array to return some JSX for each item. We also
used a variable to dynamically set the CSS class of the movie elements.

During the compilation, what really happened is that a special module called babel-
plugin-transform-vue-jsx included in babel-preset-vue transformed the JSX code
into pure JavaScript code. After compilation, the preceding render function will look like
this:

render (h) {
const itemClass = 'movie'
return h('ul', { class: 'movies' },
this.movies.map (movie =>
h('li', { class: itemClass }, movie.title)
)
)
}!

As you can see, JSX is a syntax that helps write render functions. The final JavaScript code
will be quite close to what we could have written using h (or createElement) manually.

We will cover render functions in more detail in chapter ¢, Project 4 - Geolocated Blog.

Style

The Single-File Component can include multiple <style> tags to add CSS to the app that is
related to this component.

[139]

Advanced Project Setup Chapter 4

Here's a very simple example of component style applying some CSS rules to the .movies
class:

<style>
.movies {
list-style: none;
padding: 12px;
background: rgba (0, 0, 0, .1);
border-radius: 3px;
t
</style>

Scoped styles

We can scope the CSS contained inside a <style> tag to the current component with the
scoped attribute. It means that this CSS will only be applied to the elements of this
component's template.

For example, we can use generic class names such as movie and ensure that it won't conflict
with the rest of the app:

<style scoped>
.movie:not (:last—-child) {
padding-bottom: 6px;
margin-bottom: 6px;
border-bottom: solid 1px rgba (0, 0, 0, .1);
¥
</style>

The result will look like this:

Star Wars

Blade Runner

This works, thanks to a special attribute applied to both the template and the CSS with
PostCSS (a processing tool). For example, consider the following scoped styled component:

<template>
<hl class="title">Hello</h1l>
</template>

[140]

Advanced Project Setup Chapter 4

<style scoped>
.title {
color: blue;

}
</style>

It is equivalent to the following:

<template>
<hl class="title" data-v-02ad4e58>Hello</hil>
</template>

<style>
.title[data-v-02ad4e58] {
color: blue;

}
</style>

As you can see, a unique attribute was added to all the template elements and to all the CSS
selectors so that it will only match this component's template and will not conflict with
other components.

Scoped styles don't eliminate the need for classes; due to the way browsers
render CSS, there might be performance loss when selecting a plain
element with an attribute. For example, 11 { color: blue; } willbe
many times slower than .movie { color: blue; } when scoped to the
component.

Adding preprocessors

Nowadays, CSS is rarely used as is. It is common to write styles with a more powerful and
feature-rich preprocessor language.

On the <style> tags, we can specify one of these languages to use with the 1ang attribute.

We will take this template as the base for our component:

<template>
<article class="article">
<h3 class="title">Title</h3>
</article>
</template>

[141]

Advanced Project Setup Chapter 4

Sass

Sass is a well-known CSS preprocessor used by a lot of tech companies:
1. To enable Sass in your component, install the following packages:
npm install —--save—-dev node-sass sass—-loader

2. Then, in your component, add a <style> tag with the 1ang attribute set to
"sass™":

<style lang="sass" scoped>
.article
.title
border-bottom: solid 3px rgba(red, .2)
</style>

3. Now, test your component with the vue build command. You should have a
result similar to this one:

[Vue App X
&« C | @ localhost: 4000

Title

If you want to use the SCSS syntax variant of Sass, you need to use
lang="scss".

Less

Less has a simpler syntax than other CSS preprocessing languages:
1. To use Less, you need to install the following packages:

npm install —--save-dev less less-loader

[142]

Advanced Project Setup Chapter 4

2. Then, in your component, set the 1ang attribute to "less":

<style lang="less" scoped>
.article {
.title {
border-bottom: solid 3px fade(red, 20%);

}

}
</style>

Stylus

Stylus is more recent that Less and Sass, and is also quite popular:
1. Finally, for Stylus, you need these packages:
npm install —--save-dev stylus stylus-loader
2. On the <style> tag, set the lang attribute to "stylus™":

<style lang="stylus" scoped>
.article
.title
border-bottom solid 3px rgba(red, .2)
</style>

Components inside components

Now that we know how to write Single-File Components, we want to use them inside other
components to compose the interface of the app.

To use a component inside another component, we need to import it and expose it to the
template:

1. First, create a new component. For example, here's a Movie.vue component:

<template>
<li class="movie">
{{ movie.title }}
</1li>
</template>

<script>
export default {

[143]

Advanced Project Setup Chapter 4

props: ['movie'],
}
</script>

<style scoped>
.movie:not (:last—-child) {
padding-bottom: 6px;
margin-bottom: 6px;
border-bottom: solid 1px rgba (0, 0, 0, .1);
}
</style>

We will also need a Movies.vue component if you haven't created it already. It
should look like this:

<template>
<ul class="movies">
<li v-for="movie of movies" class="movie">
{{ movie.title }}
</1li>

</template>

<script>
export default {
data () {
return {
movies: [
{ id: 0, title: 'Star Wars' },
{ id: 1, title: 'Blade Runner' },
]I
3
}I
3
</script>

2. Then, import the Movie SFC in the script of the Movies component:

<script>
import Movie from './Movie.vue'

export default {
//
}

</script>

[144]

Advanced Project Setup Chapter 4

3. Set the component s option to expose some components to the template, with an
object (the key is the name that we will use in the template, and the value is the
component definition):

export default {
components: {
Movie,
// Equivalent to “Movie: Movie,’

}I

//
}

4. We can now use the component with the Movie tag in the template:

<template>
<ul class="movies">
<Movie v-for="movie of movies"
:key="movie.id"
:movie="movie" />

</template>

If you are using JSX, you don't need the components option, as you can use a
component definition directly if it starts with a capital letter:

import Movies from './Movies.vue'

export default {
render (h) A
return <Movies/>
// no need to register Movies via components option

[145]

Advanced Project Setup Chapter 4

Summary

In this chapter, we installed several tools that will allow us to write a real production-ready
application using the recommended methods. Now, we can scaffold an entire project
skeleton to start building great new apps. We can write components in various ways, but
we can do so in a coherent and maintainable manner with the Single-File Components. We
can use these components inside our application or inside other components to compose
our user interface with multiple reusable components.

In the next chapter, we will create our third application with all we learned to this point,
plus some new topics, such as routing!

[146]

Project 3 - Support Center

In this chapter, we will build a more complex application with a routing system (this means
multiple virtual pages). This is going to be a support center for a fictional company called
"My Shirt Shop". It will have two main parts:

e An FAQ page with a few questions and answers

¢ A support ticket management page where the user will be able to display and
create new tickets

The application will have an authentication system that will allow users to create an
account or log in.

We will first start creating some basic routes, then we will integrate this account system to
finish with more advanced topics regarding routing. Through the chapter, we will reuse our
code as much as possible and apply best practices.

General app structure

In this first part, we are going to create the project structure and learn more about routing
and pages.

Project 3 - Support Center Chapter 5

Setting up the project
For setting up the project, the following steps need to be followed:

1. First, generate a Vue project with the vue init webpack-simple <folder>
command, like we did in chapter 4, Advanced Project Setup:

vue init webpack-simple support—center
cd support-center
npm install

npm install —--save babel-polyfill

Install the packages necessary to compile Stylus code (our style will be written
using Stylus):
e stylus

® stylus—loader
npm install —--save-dev stylus stylus-loader

Don't forget to save the development tools packages in the development
dependencies of your package. json file with the -—save-dev flag.

3. Remove the content of the src folder where we will put all the sources of our
app.
4. Then create amain. js file with the code needed to create a Vue app:

import 'babel-polyfill'
import Vue from 'vue'

new Vue ({
el: '#app',
render: h => h('div', 'Support center'),

P
You can now try to run the app with the npm run dev command!

5. Most the style for the app is already available. Download it (https://github.
com/Akryum/packt-vue-project-guide/tree/master/chapter5-download) and

extract the Stylus files into a style folder inside the src directory.Extract the
assets folder too.

[148]

https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download

Project 3 - Support Center Chapter 5

Routing and pages
Our app will be organized in six main pages:

¢ The home page
The public FAQ page
The login page

The tickets page
¢ A page to send a new ticket
¢ A page showing one ticket details and conversation

A route is a path representing a state of the application, usually in the form of pages. Each
route is associated with a URL pattern that will trigger the route when the address matches.
Then, the corresponding page will be presented to the user.

Vue plugins

To enable routing in our app, we need an official Vue plugin called vue-router. A Vue
plugin is some JavaScript code designed to add more features to the Vue library. You can
find many plugins on the npm registry, and I recommend the awesome-vue GitHub
reposﬂory(https://github.com/vuejs/awesomefvue)thatlkﬁsthenlkﬁlcategory:

1. Download the vue-router package from npm with the following command in
the project directory:

npm install --save vue-router

We will put all the routing-related code in a new router. js file next to the
main. js file, which you need to create. Then, we need to install the plugin we
want to use (which is vue-router in our case) with the global vue.use ()
method.

2. Create the router. js file and import both the vue library and the VueRouter
plugin from their corresponding packages:

import Vue from 'vue'
import VueRouter from 'vue-router'

[149]

https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue
https://github.com/vuejs/awesome-vue

Project 3 - Support Center Chapter 5

3. Then install the plugin into Vue:
Vue.use (VueRouter)

The vue-router plugin is now ready to be used!

Our first routes with vue-router

In this section, we will go through the steps required to set up routing in our Vue
application.

Layouts with router-view

Before adding routes, we need to setup a layout for the app where the route components
will be rendered.

1. Let's create a component called AppLayout .vue in a new components folder
inside the src directory.

2. Write the template of the component--a <div> element containing a <header>
with an image and some text. Then, add a <router-view /> component after
the header:

<template>
<div class="app-layout">
<header class="header">
<div><img class="img"

src="../assets/logo.svg"/></div>
<div>My shirt shop</div>
</header>
<!-— Menu will be here ——>
<router-view />
</div>
</template>

[150]

Project 3 - Support Center Chapter 5

The <router-view /> component is a special component provided by the vue-
router plugin that will render the component of the current matching route. It is

not a real component since it doesn't have its own template, and it will not appear
in the DOM.

3. After the template, add a style tag importing the main Stylus file from the
styles folder you downloaded earlier in the Setting up the project section. Don't
forget to specify that we are using stylus with the 1ang attribute:

<style lang="stylus">
@import '../style/main';
</style>

4. Since we can have as many style tags as we need in a SFC, add another one, but
scoped this time. We will specify the size of the header logo in this second style
section:

<style lang="stylus" scoped>
.header {
.img {
width: 64px;
height: 64px;
}
}
</style>

To improve the performance, it is recommended to use classes inside
scoped styles.

Our layout component is ready to be included in our app!
5. Inthemain. js file, import it and render it on the root Vue instance:
import AppLayout from './components/AppLayout.vue'
new Vue ({
el: '"#app',

render: h => h (AppLayout),
})

[151]

Project 3 - Support Center Chapter 5

We can't start the app yet, since we are not finished with routing!

If you look at the console of your browser, you might see an error message
complaining about the <router-view /> component being missing. This
is because we don't have the imported router. js file where we installed

the vue-router plugin into Vue, so the code isn't included in our app yet.

Creating routes

Let's create a few dumb pages for test routing:

1. In the components folder, create a Home . vue component containing a very
simple template with a <main> element, a title, and some text:

<template>
<main class="home">
<hl>Welcome to our support center</hi1>
<p>
We are here to help! Please read the <a>F.A.Q first,
and if you don't find the answer to your question, <a>send
us a ticket!
</p>
</main>
</template>

2. Then, create an FAQ. vue component next to Home . vue. It should also contain a
<main> element, inside of which you can add a simple title:

<template>
<main class="faqg">
<hl1>Frenquently Asked Questions</hl>
</main>
</template>

[152]

Project 3 - Support Center Chapter 5

We now have what we need to create a few routes.
3. In the router. js file, import the two components we just created:

import Home from './components/Home.vue'
import FAQ from './components/FAQ.vue'

4. Then, create a routes array:

const routes = |
// Routes will be here
]

A route is an object containing a path, a name, and a component to render:

{ path: '/some/path', name: 'my-route', component: ... }

The path is the pattern that the current URL should match for the route to be
activated. The component will be rendered in the special <router-view />
component.

The route name is optional, but I strongly recommend using it. It allows
you to specify the names of the routes instead of the path, so that you can
move and change your routes around without ending up with broken
links.

5. With that in mind, we can now add our two routes in the routes array:

const routes = [
{ path: '/', name: 'home', component: Home },
{ path: '/faq', name: 'faq', component: FAQ },
]

Let's review what it will do:

e When the browser URL is http://localhost:4000/, the Home.vue
component will be rendered

e When the URLis http://localhost:4000/faq/, the FAQ.vue component will
be displayed

[153]

Project 3 - Support Center Chapter 5

The router object

With our routes ready, we need to create a router object that will take care of managing
the routing for us. We will use the VvueRouter constructor from the vue-router package.
It takes one opt ions parameter and for now, we are going to use the routes parameter:

1. After the routes array in the router. js file, create a new router object and
specify the routes parameter:

const router = new VueRouter ({
routes,

})

The plugin we installed is also the router constructor, so we are using the
same VueRouter variable. VueRouter is in fact a valid Vue plugin
because it has an install method. We will create our own plugin in this
chapter!

2. Export the router object as the default exported value of the module:
export default router

3. Now back to our main. js file, we need to provide the router object to the Vue
application. Import the router we just created:

import router from './router'
4. Then add it as a definition option to the root Vue instance:

new Vue ({
el: '#app',
render: h => h(AppLayout),
// Provide the router to the app
router,

})

That is all we need to have routing working! You can now try to change the URL in your
browser to either http://localhost:4000/#/ or http://localhost:4000/#/faqgand
get a different page each time:

[154]

Project 3 - Support Center Chapter 5

; . | Euillzmms @A |
/ [VueApp x WO
o —
&« C | @ localhost:4000/fag e
& ol Elements Console Vue Sources Network Performance Memory Application Security Audits E 4
v Ready. Detected Vue 2.4.1. A Components €9 Vuex #% Events C' Refresh
Q, Filter companents FAQ> ® InspectDOM @ Filter inspected data
¥ <AppLayout
<FAQ> == svio | Fouter-view: /Taa date
» Broute: Object
» questionList: Array[5]
remoteDataloading: @ -

Don't forget the sharp # character in the URL; it is needed to fake the route
changes while not changing the real web page. This is the default router
mode called hash, and it works with any browser and server.

Router modes

We can change the router mode with the mode parameter in the constructor options. It can
either be 'hash' (default), 'history', or 'abstract'.

The hash mode is the default we are already using. It is the "safest" choice since it is
compatible with any browser and server. It consists of using the "hash" part of the URL
(which means the part after the sharp character) and change it or react to changes to it. The
big advantage is that changing the hash part will not change the real web page where our
app is running (which would be very unfortunate). The obvious drawback is that it forces
us to separate the URL in two with the not so pretty sharp symbol.

[155]

Project 3 - Support Center Chapter 5

Thanks to the HTML5 history.pushState API, we can get rid of this sharp character and
get a real URL for our app! We need to change the mode to 'history"' in the constructor:

const router = new VueRouter ({
routes,
mode: 'history',

})

Now we can use pretty URLs such as http://localhost:4000/faqin our Single-Page
App! There are two problems though:

¢ The browser needs to support this HTML5 API, which means it won't work on
Internet Explorer 9 or less (all other major browsers have supported it for quite
some time).

¢ The server has to be configured to send the home page instead of throwing a 404
error when accessing a route such as / fagq, since it doesn't really exist (you don't
have a file called faqg.html). This also means we will have to implement the 404
page ourselves.

Thankfully, the webpack server used by vue buildis configured to support this by
default. So you can go ahead and try the new http://localhost:4000/faq URL!

There is a third mode called abstract that can be used in any JavaScript environment
(including Node.js). If there is no browser API available, the router will be forced to use this
mode.

Creating a navigation menu

Instead of manually typing the URL, it would be great to have a proper navigation menu in
our app! Let's create a new NavMenu. vue file in our components folder:

<template>
<nav class="menu">
<!-- Links here ——>
</nav>
</template>

[156]

Project 3 - Support Center Chapter 5

Next, we will add it in the layout. Import the new component in the AppLayout one:

<script>
import NavMenu from './NavMenu.vue'
export default {

components: {

NavMenu,

}I
}
</script>

Then add it to the AppLayout template:

<header class="header">

<div></div>
<div>My shirt shop</div>
</header>

<NavMenu />

Router links

The vue-router plugin provides us with another handy special component--<router-
link>.Itis a component that will change to a specified route when clicked thanks to its to
prop. By default, it will be a <a> HTML element, but this can be customized with the tag

prop.
For example, a link to the FAQ page would be:

<router-link to="/faq">FAQ</router-link>
The to prop can also get an object with the name property instead of the path:

<router-link :to="{ name: 'faq' }">FAQ</router-link>

This will dynamically generate the correct path for the route. I recommend you to use this
second method as opposed to only specifying the path--that way, if you change the paths of
your routes, your navigation links will still work.

[157]

Project 3 - Support Center Chapter 5

When using the object notation, don't forget to bind the to prop with v-
bind or the : shorthand, or else the router-1ink component will get a
string and won't understand it's an object.

Now we can add the links to our NavMenu component:

<template>
<nav class="menu">
<router-1link :to="{ name: 'home' }">Home</router-link>
<router-link :to="{ name: 'faqg' }">FAQ</router-link>
</nav>
</template>

You should now have a working menu in the app:

/ \ || Gufflemme €A |

/ [Vue App x N\

&« C | @ localhost:4000 Y
Home FAQ

Welcome to our support center

We are here to help! Please read the F.A.Q first, and if you don't find the answer to your question, send us a ficket!

[158]

Project 3 - Support Center Chapter 5

Active class

A router link gets the active class when the route it is associated with is currently active. By
default, the component gets the router-link-active CSS class, so you can change its
visuals accordingly:

1. In our NavMenu.vue component, declare some scoped style to add a bottom
border to the active link using Stylus:

<style lang="stylus" scoped>
@import '../style/imports';

.router-link-active {
border-bottom-color: $primary-color;

}
</style>

We include the Sprimary-color variable with the @import
'../style/imports'; statement, which imports the imports.styl file
containing the Stylus variables.

If you try the app now, you will find that something weird is happening with our
menu. If you go to the Home page, it is working as expected:

Home FAQ

Welcome to

But when you go to the FAQ page, both the Home and the FAQ links are
highlighted:

Home FAQ

Frequently

[159]

Project 3 - Support Center Chapter 5

This is because by default, the active class matching behavior is inclusive! This
means <router-link to="/faq"> will get the active class if the pathis /faq or
starts with /faq/. But it also means <router-link to="/"> will get the class if
the current path starts with /, which are all possible paths! That's why our Home
link will always get the class.

To prevent this from happening, there is the exact prop, which is a Boolean. If it
is set to t rue, the link will only get the active class if the current path is matching
exactly.

2. Add the exact prop to the Home link:

<router-link :to="{ name: 'home' }" exact>Home</router-link>

Now, only the FAQ link should be highlighted:

Home FAQ

Frequently

FAQ - Consuming an API

In this section, we will create the FAQ page, which will get data from the server. It will
display a loading animation and then the list of questions and answers.

Server setup

This is our first app that will communicate with a server. You will get a server with a ready-
to-use APL

You can download the server files (https://github.com/Akryum/packt-vue-project—
guide/tree/master/chapter5-download). Extract them into another folder than our app
and run the following commands to install the dependencies and launch the server:

cd server_folder
npm install
npm start

[160]

https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter5-download

Project 3 - Support Center Chapter 5

You should now have the server running on port 3000. When this is done, we can continue
building our app with a real backend this time!

Using fetch

In the FAQ . vue Single File Component, we will use the standard fetch API of the web
browser to retrieve the questions from our server. The request will be a very simple GET
request to http://localhost:3000/questions with no authentication. Each question
object will have title and content fields:

1. Open FAQ.vue and start by adding the questions data property in the
component script, which will hold the array of questions retrieved from the
server. We also need an error property to display a message when something
goes wrong during the network request:

<script>
export default {
data () |
return |
questions: [],
error: null,
}
}!
}

</script>

2. Now we can add the questions and answers to the template with a v-for loop,
and the following error message:

<template>
<main class="faqg">
<hl>Frequently Asked Questions</hl>

<div class="error" v-if="error">
Can't load the questions
</div>

<section class="1ist">
<article v-for="question of questions">
<h2 v-html="question.title"></h2>
<p v-html="question.content"></p>

[161]

Project 3 - Support Center Chapter 5

</article>
</section>
</main>
</template>

We are ready to fetch! The fetch API is promised-based and quite simple to use.
Here is an example of fetch usage:

fetch(url) .then (response => {
if (response.ok) {
// Returns a new promise
return response.json()
} else {
return Promise.reject ('error')
}
}) .then (result => {
// Success
console.log('JSON:', result)
}) .catch(e => {
// Failure
console.error (e)

})

We first call fetch with the first parameter being the URL of the request. It
returns a promise with a response object, which holds information about the
request result. If it was successful, we use response. json (), which returns a
new promise with the JSON parsed result object.

The request will be made inside the component as soon as it is created when the
route is matched, which means that you should use the created life cycle hook in
the component definition:

data () {
//
}I
created () {
// fetch here
}I

If everything goes well, we will set the questions property with the JSON parsed
result. Or else we will display an error message.

[162]

Project 3 - Support Center Chapter 5

3. Start by calling fetch with the right URL:

created () {
fetch ('http://localhost:3000/questions')
}I

4. Add the first then callback with the response object:

fetch ('http://localhost:3000/questions') .then (response => {
if (response.ok) {
return response.json ()
} else {
return Promise.reject ('error')
}
})

5. We need another then callback since response. json () returns a new promise:

//

}) .then (result => {
// Result is the JSON parsed object from the server
this.questions = result

H)
6. Finally, we catch all possible errors to display the error message:

//
}) .catch (e => {
this.error = e

})
Here is a summary of our created hook:

created () {
fetch('http://localhost:3000/questions') .then(response => {
if (response.ok) {
return response.json()
} else {
return Promise.reject ('error')
3
}) .then (result => {
this.questions = result
}) .catch(e => {
this.error = e
H)
}I

[163]

Project 3 - Support Center Chapter 5

We can rewrite this code using the async and await JavaScript keywords to
make it look like sequential code:

async created () {
try {
const response = await fetch('http://localhost:3000/questions')
if (response.ok) {
this.gquestions =
} else {
throw new Error ('error')
}
} catch (e) {
this.error = e

}

await response.json()

Hy

You can now try the page, which should display a list of questions and answers:

Frequently Asked Questions

Why won't my discount code work?

Inventore iste reprehenderit aut reiciendis repellendus. Quas cumgue aliqguam accusantium et itaque quisquam
voluptatem. Commodi quo quia occaecati dicta ratione qui at tempore. At saepe est et saepe accusamus voluptates.

How do i return an item?

Voluptate cupiditate officia quia accusantium. Fugiat ut praesentium quia ut et labore reiciendis fugit. Voluptas eos
maiores itague aut. Sequi harum dolor neque sunt rerum iste ducimus. Quas sapiente cumgue voluptatem
repudiandae ipsum. Natus quis aut aut fugiat. Nisi non sed reprehenderit mollitia commaodi et qui errar. Velit autem
omnis et repellendus facere libero praesentium. Sit aut possimus eligendi consectetur beatae. Iste et officia delectus
modi ratione inventore enim voluptatem.

[164]

Project 3 - Support Center Chapter 5

To see if our error management is working, you can go to the console where the server is
running, and stop it (for example, with the Ctrl+C keyboard shortcut). Then, you can reload

the app and the following error message should be displayed:

Frequently Asked Questions

0 Can't load the questions

Loading animation

There is one last thing missing--we should show a loading animation to inform the user that
an operation is in progress instead of an empty screen. To this effect, the server is faking a
1.5 s delay on the /questions request so we can easily see the loading animation.

Since we are going to display loading animations inside multiple components, we are going
to create a new global component:

1. In the components folder, create a new Loading. vue file with the following
template:

<template>
<div class="loading">
<div></div>
</div>
</template>

2. Create a new global-components. js file next to the main. js file in the main
folder. In this file, we are going to register the Loading component globally with
the Vue . component () method:

import Vue from 'vue'
import Loading from './components/Loading.vue'

Vue.component ('Loading', Loading)

[165]

Project 3 - Support Center Chapter 5

This is the file where we will register all the global components used
across all the application.

3. Then, in the main. js file, import the global-components. js module:
import './global-components'

4. Back to our FAQ. vue component, we need a new loading Boolean data property
to toggle the display of the animation:

data () {
return {
questions: [],
error: null,
loading: false,
}
}I

5. In the template, add the loading animation:
<Loading v-if="loading" />

6. Finally, change the created hook a bit by setting 1oading to true at the
beginning, and false when everything is done:

async created () A

this.loading = true

try {
const response = await

fetch ('http://localhost:3000/questions')
//

} catch (e) {
this.error = e

}
this.loading = false

}

[166]

Project 3 - Support Center Chapter 5

You can now reload the page and briefly see the loading animation before the questions
appear:

Frequently Asked Questions

Extending Vue with our own plugin

Since we will use fetch in multiple components for our application and we want to reuse
code as much as possible, it would be nice to have a method on all of our components that
makes a request to the server with a predefined URL.

This a nice use case for a custom Vue plugin! Don't worry, writing a plugin is actually
pretty simple.

Creating a plugin

To create a plugin, there is only one rule--a plugin should be an object with an install
method, which takes the Vue constructor as the first argument, and an optional options
argument. This method will then add new features to the framework by modifying the
constructor:

1. Create a new plugins folder in the src folder.

2. Inside the plugins folder, create a fetch. js file where we will write our plugin.
In this case, our plugin will add a new $fetch special method on all of our
components. We will do that by changing the prototype of Vue.

3. Let's try creating a very simple plugin, by exporting an object with an install
method:

export default {
install (Vue) {
console.log('Installed!")
t
t

[167]

Project 3 - Support Center Chapter 5

That's it! We have created a Vue plugin! Now, we need to install it into our
application.

4. In the main. js file, import the plugin and then call the Vue . use () method just
like we did for vue-router:

import VueFetch from './plugins/fetch'
Vue.use (VueFetch)

You should now see the 'Installed!' message in your browser console.

Plugin options
We can configure the plugin with an opt ions parameter:
1. Edit the install method to add this parameter after vue:
export default {
install (Vue, options) {
console.log('Installed!', options)
Ty
}

We can now add a configuration object to the Vue.use () method in the main. js
file.

2. Let'sadd a baseUrl property to the configuration:
Vue.use (VueFetch, |
baseUrl: 'http://localhost:3000/"',
})
You should now see the options object in the browser console.
3. Store baseUrl into a variable so we can use it later:
let baseUrl
export default {
install (Vue, options) {

console.log('Installed!', options)

baseUrl = options.baseUrl
b

[168]

Project 3 - Support Center Chapter 5

Fetch method

Now, we are going to write the $ fetch method. We will take most of the code we used in
the created hook of the FAQ component:

1. Implement the $fetch method using fetch:
export async function $fetch (url) {

const response = await fetch(${baseUrl}${url}’)
if (response.ok) {

const data = await response.json()
return data

} else {
const error = new Error('error')

throw error

}

We export it so we can use it in our plain JavaScript code too. The url parameter
is now just the path of the query without the domain, which is now in our
baseUrl variable--this allows us to change it easily without having to refactor
each component. We also take care of the JSON parsing, since all the data from the
server will be encoded in JSON.

2. To make it available in all components, simply add it to the prototype of vue
(which is the constructor used to create components):

export default {
install (Vue, options) {
// Plugin options
baseUrl = options.baseUrl

Vue.prototype.$fetch = S$fetch

by
}

3. Then, refactor the FAQ component to use our new special $fetch method in the
created hook:

this.loading = true

try {
this.questions = await this.$fetch('questions')

} catch (e) {
this.error = e

}
this.loading = false

[169]

Project 3 - Support Center Chapter 5

Our code in the component is now shorter, easier to read, and more scalable since we can
change the base URL easily.

Reusing code with mixins

We have seen how to create plugins, but there is another way to improve our code--what if
we could reuse component definitions such as computed properties, methods, or watchers
across multiple components? This is what mixins are for!

A mixin is a component definition object that can be applied to other definition objects
(including other mixins). It is very simple to write, because it looks exactly the same as a
regular component definition!

Our objective here is to have a RemoteData mixin that will allow any component to make
requests to the server in order to fetch data. Let's add a new mixins folder in the src
directory, and create a new RemoteData. js file:

1. We will start simple by exporting a definition with a data property:

export default {
data () {
return {
remoteDataloading: O,
}
}I

This remoteDataLoading property will be used to count the number of
requests that are currently loading, to help us display a loading animation.

2. Now, to use this mixin in our FAQ component, we need to import it and add it in
the mixins array:

<script>
import RemoteData from '../mixins/RemoteData'

export default {
mixins: [
RemoteData,

1,

[170]

Project 3 - Support Center

Chapter 5

/]
}
</script>

If you inspect the component, you should now see an additional
remoteDataLoading property displayed:

v ~Root
data

v <AppLayout

» N u » Broute: Object

<FAQ> == svmo |router-view: /faq » guestions: Array[5]

remoteDataloading: @

So what happened? The mixin got applied and merged into the component
definition of FAQ.vue, which means that the data hook was called twice--first
from the mixin, then from the FAQ definition and a new property was added!

Vue will automatically merge the standard options such as hooks, data,
computed, methods, and watch, but if you have, for example, a property
of a method with the same name, the last one applied will override the

previous ones.

. Let's try overriding the new property in our component with another value:

data () {
return {
questions: [],
error: null,
loading: false,
remoteDataloading: 42,
}
}I

As you can see in the component inspector, the final component definition has a
higher priority than the mixin. Also, you may have noticed that the mixins
option is an array, thus we can apply multiple mixins to the definition, which will
be merged in order. For example, consider we have two mixins and want to apply

them to a component definition. Here is what will happen:

1. The definition object contains the options of mixin 1.

2. The options of mixin 2 are merged into the definition object (existing

property/method names are overriden).

3. In the same way, the options of the component are merged into the

final definition object.

[171]

Project 3 - Support Center Chapter 5

You can now remove the duplicate remoteDataLoading: 42, from the FAQ component
definition.

Hooks such as data, created, mounted... are each called individually in
the order they were applied to the final definition. This also means that the
final component definition hooks will be called last.

Fetching remote data

We have a problem--each component using our RemoteData mixin will have different data
properties to fetch. Therefore, we need to pass parameters to our mixin. Since a mixin is
essentially a definition object, why not use a function that can take parameters and then
return a definition object? That's what we will do in our case!

1. Wrap the object we have defined inside a function with a resources parameter:

export default function (resources) {
return {
data () {
return {
remoteDataloading: O,
}
}I

}

The resources parameter will be an object with each key being the name of the
data property we want to add, and the value being the path of the request that
needs to be made to the server.

2. So we need to change the way we use the mixin in our FAQ.vue component to a
function call:

mixins: [
RemoteData ({
questionList: 'questions',

1)y
i

Here, we are going to fetch the http://localhost:3000/questions URL (with
the special $ fetch method we created earlier) and put the result in the
questionList property.

[172]

Project 3 - Support Center Chapter 5

Now onto our RemoteDat a mixin!

3. First things first, we need to initialize each data property to a null value, so Vue
can set up reactivity on them:

data () {
let initData = {
remoteDataloading: O,

}

// Initialize data properties

for (const key in resources) {
initDatalkey] = null

}

return initData
I

This step is important--if you don't initialize the data, it won't be made
reactive by Vue, so the component will not be updated when the

properties change.

You can try the app and see in the component inspector that a new
questionList data property has been added to the FAQ component:

data

p Froute: Object
p questionList: Array[5]

4. Then, we will create a new fet chResource method that fetches one resource
and update the corresponding data property:

methods: {
async fetchResource (key, url) {
try {
this.$datalkey] = await this.$fetch (url)

} catch (e) {
console.error (e)
}
}I
}I

[173]

Project 3 - Support Center Chapter 5

Our component now has access to this new method and can use it directly.

5. To make our mixin smarter, we will automatically call it inside the created hook
(which will be merged):

created () {
for (const key in resources) {
let url = resourceslkey]
this.fetchResource (key, url)
}
by

You can now verify that the questionList data property gets updated with a
new request made to the server:

v questionlList: Array[5]
» B: Object

1: Object

2: Object

3: Object

[
&
[
p 4: Object

=N

6. Then, you can remove the old code with the questions property in the FAQ.vue
component and change the template to use the new property:

<article v-for="question of questionList">

Loading management

The next thing we want to do is provide a way to know if the loading animation should be
displayed. Since we could potentially have multiple requests, we are going to use a numeric
counter instead of a Boolean--remoteDataLoading that we already declared in the data
hook. Each time a request is made, we increment the counter, and when it is complete we
decrement the counter. This means if it is equal to zero no request is currently pending, and
if it is greater or equal to one we should display a loading animation:

1. Add the two statements incrementing and decrementing the
remoteDataloading counter in the fetchResource method:

async fetchResource (key, url) {
this.$data.remoteDataloading++
try A

[174]

Project 3 - Support Center Chapter 5

this.$datalkey] = await this.$fetch (url)
} catch (e) {
console.error (e)
}
this.$data.remoteDataloading——
}I

2. To make our life easier when using the mixin, let's add a computed property
called remoteDataBusy that will be t rue when we need to display the loading
animation:

computed: {
remoteDataBusy () {
return this.$data.remoteDataLoading !== 0
by
by

3. Back to our FAQ component, we can now remove the loading property, change
the v—1if expression for the Loading component, and use the
remoteDataLoading computed property:

<Loading v-if="remoteDataBusy" />

You can try refreshing the page to see the loading animation displayed before the data is
retrieved.

Error management

Finally, we could manage the errors that could occur for any resource request:

1. We will store the errors for each resource in a new remoteErrors object, which
needs to be initialized:

// Initialize data properties

initData.remoteErrors = {}

for (const key in resources) {
initDatalkey] = null
initData.remoteErrors[key] = null

}

The key of the remoteErrors object will be the same as the resource, and the
value will be the error or null if there is no error.

[175]

Project 3 - Support Center Chapter 5

Next, we need to modify the fetchResource method:

¢ Before the request, reset the error by setting it to null

e If there is an error in the catch block, put it into the remoteErrors object at the
right key

2. The fetchResource method should now look as follows:

async fetchResource (key, url) {
this.$data.remoteDataloading++
// Reset error
this.$data.remoteErrors[key] = null
try {
this.$datalkey] = await this.$fetch (url)
} catch (e) {
console.error (e)
// Put error
this.$data.remoteErrors[key] = e
}
this.$data.remoteDataloading——
}I

We could now display specific error messages for each resource, but we will
simply display a generic error message in this project. Let's add another computed
property called hasRemoteErrors, which will return true if there is at least one
error.

3. Using the JavaScript Object .keys () method, we can iterate on the keys of the
remoteErrors object and check if some values are not null (which means that
they are truthy):

computed: {

//

hasRemoteErrors () {
return Object.keys (this.$data.remoteErrors) .some (
key => this.$data.remoteErrors[key]
)
}!
}!

[176]

Project 3 - Support Center Chapter 5

4. We can now change the FAQ component template again by replacing the error
property with the new one:

<div class="error" v-if="hasRemoteErrors">

Like we did before, you can shut down the server to see the error message

displayed.
We have now finished the FAQ component, whose script should now look as
follows:

<script>

import RemoteData from '../mixins/RemoteData’

export default {
mixins: [
RemoteData ({
questionList: 'questions',
1)y
I
}

</script>

As you can see, it is very concise now!

Support tickets

In this last part, we will create an authenticated section of our app, where the user will be
able to add and view support tickets. All the necessary requests are available on the server
you already downloaded and if you are curious about how this has been done in the node
with passport. js, you can take a look at the sources!

User authentication

In this first section, we will take care of the user system of our app. We will have both login
and sign up components, to be able to create new users.

[177]

Project 3 - Support Center Chapter 5

Storing the user in a centralized state

We will store the user data inside a state object like we did in chapter 3, Project 2 - Castle
Duel Browser Game, so we can access it in any component of the app:

1. Create anew state. js file next to main. js, which exports the state object:

export default {
user: null,

}

The user property will be null when no user is logged in, or else it will contain
the user data.

2. Then, in the main. js file, import the state:
import state from './state'
3. Then, use it as the data of the root instance so Vue makes it reactive:

new Vue ({

el: '"#app',

data: state,

router,

render: h => h(AppLayout),
H)

Another plugin

We could then import the state in component files when we need it, but it would be more
convenient to be able to access it with a special getter called $state on the Vue prototype
like we did for the fetch plugin. We will pass the state object to the plugin options, and the
getter will return it.

1. In the plugins folder, create a state. js file that exports the new plugin:

export default {
install (Vue, state) {
Object.defineProperty (Vue.prototype, 'S$state', {
get: () => state,
})

[178]

Project 3 - Support Center Chapter 5

Here we are using the JavaScript Object .defineProperty () method to set up a
getter on the Vue prototype, so every component will inherit it!

One last thing--we need to install the state plugin!
2. Inthemain. js file, import the new plugin:
import VueState from './plugins/state'
3. Then install it with the state object as the options parameter:
Vue.use (VueState, state)

We can now use $state in our components to access the global state! Here is an
example:

console.log(this.$state)

This should output the state object with the user property.

Login forms

In this section, we will first create new components to help us build forms faster, and then
we will add the sign up and the login forms to the application with a Login.vue
component. In later sections, we will create another form to submit new support tickets.

Smart form

This generic component will take care of the very general structure of our form
components, and will automatically call an operation function, display a loading
animation and the eventual error messages thrown by the operation. Most of the time, the
operation will be a POST request made to the server.

The template is essentially a form with a title, a default slot where the inputs will be
rendered, an actions slot for the buttons, a loading animation, and a place for the error
messages. This will be generic enough for the two forms we need in the application:

1. Create a new SmartForm.vue component in the components folder:

<template>
<form @submit.prevent="submit">
<section class="content">
<h2>{{ title }}</h2>

[179]

Project 3 - Support Center Chapter 5

<!-— Main content —-->

<slot />

<div class="actions">
<!—— Action buttons —-—>
<slot name="actions" />

</div>

<div class="error" v-if="error">{{ error }}</div>
</section>

<transition name="fade">

<!-- Expanding over the form -->
<Loading v-if="busy" class="overlay" />
</transition>
</form>
</template>

On the <form> element, we set up an event listener on the 'submit'
event, which prevents the default behavior of the browser (reloading the
page) with the prevent modifier.

For now, the SmartForm component will have three props:

e title: Thisis displayed in the <h2> element.

e operation: The asynchronous function called when the form is submitted. It
should return a promise.
e valid: A Boolean to prevent calling the operation if the form is not valid.

2. Add them to the script part of the component:

<script>
export default {
props: {
title: {
type: String,
required: true,
}I
operation: {
type: Function,
required: true,
}I
valid: {
type: Boolean,
required: true,

b

[180]

Project 3 - Support Center Chapter 5

by
}

</script>

As you can see, we are now using a different way of declaring the props--by using
an object, we can specify more details of the prop. For example, with required:
true, Vue will warn us if we forget a prop. We can also put a type that Vue will
check too. This syntax is recommended since it helps both understanding the
props of the component and avoiding errors.

We also need two data properties:

* busy: A Boolean to toggle the display of the loading animation
e error: This is the error message or null if there aren't any

3. Add them with the data hook:

data

0 A

return {
error: null,
busy: false,

}
by

4. Finally, we need to write the submit method called when the form is submitted:

methods: {
async submit () {
if (this.valid && !this.busy) {

}
b
b

this.error = null
this.busy = true
try {

await this.operation()
} catch (e) {

this.error = e.message
}
this.busy = false

If the form isn't valid or is still busy, we don't call the operation. Or else we reset
the error property and then call the operation prop, with the await keyword
since it should be an asynchronous function that returns a promise. If we catch an
error, we set the message to the error property so it is displayed.

[181]

Project 3 - Support Center Chapter 5

5. Now that our generic form is ready, we can register it in the global-
components. s file:

import SmartForm from './components/SmartForm.vue'
Vue.component ('SmartForm', SmartForm)

Form input component

In our forms, we will have many inputs with the same markup and functionalities. This is
the perfect occasion to make another generic and reusable component. It will have a small
template with mainly an <input> element and will be able to show the user that it is
invalid with a red border:

1. Start by creating a new FormInput.vue component with the following props:
¢ name is the HTML name of the input, needed for the browser
autocompletion to work.
e type will be 'text ' by default, but we will need to set 'password’
eventually.
e value is the current value of the input.
¢ placeholder is the label displayed inside the input.

e invalidis a Boolean to toggle the invalid display (the red border). It
will default to false.

The script should look like this with the prop object notation:

<script>
export default {
props: {
name: {
type: String,
}I
type: {
type: String,
default: 'text',
}I
value: {
required: true,
}I
placeholder: {
type: String,
}I
invalid: {
type: Boolean,

[182]

Project 3 - Support Center Chapter 5

default: false,
}I
}I
}
</script>

2. For the invalid display, we will add a computed property to dynamically change
the CSS classes of the input:

computed: {
inputClass () {
return {
'invalid': this.invalid,
}
}I
}I

3. Now we can write our template. It will have a <div> element containing the

<input>:

<template>
<div class="row">
<input
class="input"
:class="inputClass"
:name="name"
rtype="type"
:value.prop="value"
:placeholder="placeholder"
/>
</div>
</template>

We use the prop modifier on the v-bind:value directive to tell Vue to
set the DOM node value property directly instead of setting the HTML
attribute. This is a good practise when dealing with properties such as
value for input HTML elements.

4. To begin testing it, we can register the component in the global-
components. s file:

import FormInput from './components/FormInput.vue'
Vue.component ('FormInput', FormInput)

[183]

Project 3 - Support Center Chapter 5

5. Create a new Login.vue component using the FormInput component:

<template>
<main class="login">
<hl1>Please login to continue</hl>
<form>
<FormInput
name="username"
:value="username"
placeholder="Username" />
</form>
</main>
</template>

<script>
export default {
data () {
return {
username: '',
}
b
}

</script>
6. Don't forget the corresponding route in the router. js file:
import Login from './components/Login.vue'
const routes |
//
{ path: '/login', name: 'login', component: Login },

]

You can test the component by opening the app with the /1ogin path in the URL:

Please login to continue

Username

[184]

Project 3 - Support Center Chapter 5

For now, the FormInput component is read-only because we don't do any thing
when the user types something into the field.

7. Let's add a method to take care of that:

methods: {
update (event) {
console.log(event.currentTarget.value)
by
by

8. Then we can listen to the input event on the text field:
@input="update"
Now if you type into the text field, the content should be printed to the console.

9. In the update method, we are going to emit an event to send the new value to the
parent component. By default, the v-model directive listens to the input event,
with the new value being the first parameter:

methods: {
update (event) {
this.$emit ('input', event.currentTarget.value)
}I
}I

To understand how things work, we are not going to use v-model yet.
10. We can now listen to this input event and update the username prop:

<FormInput

name="username"
:value="username"

@input="val => username = val"
placeholder="Username" />

[185]

Project 3 - Support Center Chapter 5

The value of the username prop should be updated on the Login component:

%] Elements Console Vue Sources Metwork Performance Memory Application Secy

v Ready. Detected Vue 2.3.3. e Components
Q, Filter components I_ogin
» <Applayout
» <NavMenu data
v <lLogin> == svme [router-view: /login » Froute: Object
FormInput username: "Foo"

11. Using the v-model directive, we can simplify this code:

<FormInput
name="username"
v-model="username"
placeholder="Username" />

It will use the value prop and listen to the input event for us!

[186]

Project 3 - Support Center Chapter 5

Customizing v-model

By default, v-model uses the value prop and the input event as we just saw, but we can
customize that:

1. Inside the FormInput component, add the model option:

model: {
prop: 'text',
event: 'update',

b

2. We then need to change the name of our value prop to text:

props: A
//
text: {
required: true,
}!
}!

3. And in the template:
<input

:value="text"

/>
4. Plus the input event should be renamed to update:
this.$emit ('update', event.currentTarget.value)

The component should still work in the Login component, since we told v-model
to use the text prop and update event!

Our input component is now ready! For this project, we have kept this component simple,
but you can add more features into it if you want to, such as icons, error messages, floating
label, and so on.

Login component

We can now continue building the Login component, which will take care of signing in and
signing up the user.

[187]

Project 3 - Support Center Chapter 5

There are several data properties we need for the state of this component:

¢ mode: This can either be '1ogin' or 'signup'. We will change the layout a bit
depending on this.

¢ username: Used in both modes.

e password: Also used in both modes.

* password2: Used to verify the password when signing up.
¢ email: Used in sign up mode.

1. Our data hook should now look like this:

data () {
return {
mode: 'login',
username: '',
password: '',
password2: '',
email: '"',
}
}I

2. We can then add a tit1le computed property to change the form title depending
on the mode:

computed: {

title () {
switch (this.mode) {
case 'login': return 'Login'
case 'signup': return 'Create a new account'

}
by
by

We will also add some basic input validation. First, we would like to highlight the
retype password field when it's not equal to the first password.

3. Let's add another computed property for that:
retypePasswordError () {

return this.password2 && this.password !== this.password2
b

[188]

Project 3 - Support Center Chapter 5

Then, we will also check that no field is empty since they are all mandatory.

4. This time, we will break it up into two computed properties, since we don't want
to check the sign up specific fields when in 1ogin mode:

signupValid () {
return this.password2 && this.email &é&

'this.retypePasswordError
}I

valid () {
return this.username && this.password &&
(this.mode !== 'signup' || this.signupValid)

}I

5. Next, add the methods we will use to either 1ogin or sign up the user (we will
implement them later in the Sign up operation and Login operation sections):

methods: {

async operation () {
await this[this.mode] ()

b

async login () {
// TODO

b

async signup () {
// TODO

b

t

6. We can now move onto the template. Start by adding a SmartForm component:

<template>
<main class="login">
<hl>Please login to continue</hl1>
<SmartForm
class="form"
:title="title"
:operation="operation"
:valid="valid">
<!-- TODO -->
</SmartForm>
</main>
</template>

[189]

Project 3 - Support Center

Chapter 5

7. Then we can add the input fields:

<FormInput
name="username"
v-model="username"
placeholder="Username" />
<FormInput
name="password"
type="password"
v-model="password"
placeholder="Password" />
<template v-if="mode === 'signup'">
<FormInput
name="verify-password"
type="password"
v-model="password2"
placeholder="Retype Password"
:invalid="retypePasswordError" />
<FormInput
name="email"
type="email"
v-model="email"
placeholder="Email" />
</template>

Don't forget the name attributes--it will allow the browser to auto-

complete the fields.

8. Below the input fields, we need two different buttons for each mode. For the
login mode, we need a sign up and login button. For the sign up mode, we

need a Back button and a Create account button:

<template slot="actions">
<template v-if="mode === 'login'">

<button
type="button"
class="secondary"
@click="mode = 'signup'">
Sign up

</button>

<button
type="submit"
:disabled="!valid">
Login

[190]

Project 3 - Support Center

Chapter 5

</button>
</template>
<template v-else-if="mode
<button
type="button"
class="secondary"
@click="mode = 'login'">
Back to login
</button>
<button
type="submit"
:disabled="!valid">
Create account
</button>
</template>
</template>

'signup'">

Now you can test the component and switch between the 1ogin and sign up modes:

/ [Vue App x W localhost x \{

| Guilwme CHAY |

< C | ® localhost:4000/log;

Home FAQ Support tickets

Create a new account

Username

Password

Retype Password

Email

Back to login

Login

Please login to continue

[191]

Project 3 - Support Center Chapter 5

Style children of scoped elements

The form is currently taking all the space available. It would be better to shrink it a bit.

For this section to work, you need the latest vue-loader package
installed in your project.

Let's add some style to put a maximum width to the form:

<style lang="stylus" scoped>
.form {
>>> .content {
max-width: 400px;
}

}
</style>

The >>> combinator allows us to target elements inside the components used in the
template, while still scoping the rest of the CSs selector. In our example, the generated css
will look as follows:

.form[data-v-0e596401] .content {
max-width: 400px;
}

If we didn't use this combinator, we would have this Css:
.form .content[data-v-0e596401] {

max-width: 400px;
}

This wouldn't work since the . content element is inside the SmartForm component we
are using in the template.

If you are using SASS, you need to use the /deep/ selector instead of the
>>> combinator.

[192]

Project 3 - Support Center Chapter 5

The form should look like this now:

| ememmeaw | — |2 2
J [vue App x 'YW localhost x \\
&« C | ® localhost:4000/l0gin 7w
Home FAQ Support tickets Login

Please login to continue

Create a new account

Username
Password

Retype Password

Email

Back to login

[193]

Project 3 - Support Center Chapter 5

Improving our fetch plugin
Currently, our $fetch method can only make GET requests to the server. It was enough for
loading the FAQ, but now we need to add more features to it:

1. Inthe plugins/fetch. js file, edit the signature of the function to accept a new

options parameter:

export async function $fetch (url, options) {
//
)3
The options argument is an optional object for the browser's fet ch method that
will allow us to change different parameters, such as the HTTP method used, the

request body, and more.

2. At the beginning of the $fetch function, we would like to put some default
values for this opt ions parameter:

const finalOptions = Object.assign({}, {

headers: {
'Content-Type': 'application/json',

by

credentials: 'include',
}, options)

The default options tell the server we will always send JSON in the request body,
and tell the browser that we will also include the authorization token necessary to
authenticate the user if they are logged in. Then, the provided options argument,
if any, add its value to the finalOptions object (for example, the method

property or the body property).
3. Next, we add the new options to the fetch browser method:

const response = await fetch(${baseUrl}${url} , finalOptions)

[194]

Project 3 - Support Center Chapter 5

4. Also, the server will always send errors as text, so we can catch them and display
them to the user:

if (response.ok) {
const data = await response.json()
return data

} else {
const message = await response.text ()
const error = new Error (message)
error.response = response
throw error

}

We are now ready to make our first POST request to the server in order to create for the user
a new account and then log him in!

Sign up operation

We will start with the account creation, since we don't have any user yet. The path to call on
the server is /signup, and it expects a POST request with a JSON object in the request body
containing the username, password, and email of the new account:

Let's implement this using the $fetch method we just improved:

async signup () A
await this.$fetch('signup', {
method: 'POST',
body: JSON.stringify ({
username: this.username,
password: this.password,
email: this.email,
)y
})
this.mode = 'login'

by

We don't manage errors here, as it's the job of the SmartForm component
we built earlier.

[195]

Project 3 - Support Center Chapter 5

That's it! You can now create a new account with a simple password you will have to
remember for later. If the account creation succeeds, the form goes back to 1ogin mode.

One thing we don't do here, but that could be improved, is to let the user
know their account has been created and that they can now log in. You
could add a message below the form, or even make a floating notification
appear!

Login operation

The login method will be almost identical to the sign up. The differences are:

e We only send the username and password in the request body, to the /1ogin
path

¢ The response is the user object we need to set into the global state so every
component can know if there is a connected user (using the plugin we made
exposing the $state property)

¢ Then we redirect to the home page

It should look like this now:

async login () {
this.$state.user = await this.$fetch('login', {
method: 'POST',
body: JSON.stringify ({
username: this.username,
password: this.password,
Py
)

this.$router.push({ name: 'home' })
iy

You can now try to log in with the username and the password you used to create the
account earlier. If the login is successful, you should be redirected to the home page thanks
to the router.push () method.

The user object returned by this request contains the username field that will be displayed
in the navigation menu.

[196]

Project 3 - Support Center Chapter 5

User menu
Now it is time to add the user-related features to the navigation menu we made at the
beginning in the NavMenu. vue file:

1. We want them to appear to the far right side of the menu, so we will add this
element just after the router links we already wrote:

<div class="spacer"></div>

This will simply grow to take all the available space in the menu using the CSS
flexbox properties, so that anything we put after will be pushed to the right.

Thanks to the plugin we made earlier in the Storing the user in a centralized State
section, we have access to the global state with the $state property. It contains
the user object, which allows us to know if the user is logged in, and displays

their username and a logout link.

2. Add the user menu in the NavMenu. vue component:

<template v-if="S$state.user">
<a>{{ S$state.user.username }}
<a @click="logout">Logout
</template>

3. If the user isn't connected, we just display a 1ogin link (add this below the
template we just added):

<router-link v-else :to="{name: 'login'}">Login</router-link>

The 1ogout link needs a new logout method that we will create now.

Logout method
The logout method consists of a simple call to the /1ogout path on the server, which
should return an object with the status property equal to 'ok':

<script>
export default {
methods: {
async logout () {
const result = await this.$fetch('logout')
if (result.status === 'ok') {
this.$state.user = null

}

[197]

Project 3 - Support Center Chapter 5

b
b
}
</script>

If the user successfully logged out, we reset the user value in the global state.

Private routes with navigation guards

Now that we have an authentication system ready, we can have different types of routes:

e Public routes are always accessible
¢ Private routes are restricted to logged users
¢ Guest routes are accessible only to users that are not connected yet

We are going to create one of the routes components ahead of time to test our code:

1. Let's create the TicketsLayout .vue component that we will use later to display
either of the user support tickets:

<template>
<main class="tickets-layout">
<hl1>Your Support tickets</hl>
<!-— TODO ——>
</main>
</template>

2. Then, add the corresponding route in the router. js file:
import TicketsLayout from './components/TicketsLayout.vue'
const routes = [
//
{ path: '/tickets', name: 'tickets',
component: TicketsLayout },
]
3. Finally, add the link to this new page in the navigation menu:

<router-link :to="{ name: 'tickets' }">
Support tickets</router-link>

[198]

Project 3 - Support Center Chapter 5

Route meta properties

We can add the page access type information in the meta object on the impacted routes in
the router. js file.

The route we just created should be private and only accessible to connected users:
¢ Add the private attribute to the meta object on the route:
{ path: '/tickets', /* ... */, meta: { private: true } },

Now, if you go to the tickets page and inspect any component, you should see the $route
object exposed by the vue-router plugin. It contains the private property in the meta
object:

v Ready. Detected Vue 2.4.1. 2 Components £9 Vuex
0\ Filter components TlcketsLayout (0] Inspect DOM
» <Root
v <ApplLayout data
» <NavMenu v $route: Object

» <TicketsLayout> == swme [router-view: /tickets fullPath: "/tickets/"
» meta: Object

private: true
name: "tickets"

p params: Object (empty)
path: "/tickets/™
p» query: Object (empty)

You can put any additional information in the meta object of a route to
extend the router capabilities.

[199]

Project 3 - Support Center Chapter 5

Router navigation guards

Now that we know the tickets route is private, we would like to execute some logic before
the route is resolved to check if the user is connected. That is where navigation guards come
in handy--there are function hooks called when something happens regarding routes and
they can change the behavior of the router.

The navigation guard we need is beforeEach and it is run each time before a route is
resolved. It allows us to replace the target route with another one if necessary. It accepts a
callback with three arguments:

e to is the route currently being targeted
e fromis the previous route
e next is a function we have to call at some point for the resolution to proceed

If you forget to call next in your navigation guard, your app will be stuck.

This is because you can do asynchronous operations before calling it, so
the router doesn't make any assumption on its own.

1. Before exporting the router instance, add the beforeEach navigation guard:

router.beforeEach((to, from, next) => {
// TODO
console.log('to', to.name)
next ()

H)
2. Now we need to determine if the route we target is a private route:
if (to.meta.private) {
// TODO Redirect to login

}

3. To check if the user is connected, we need the global state--you can import it at
the start of the file:

import state from './state'
4. Change the condition to also check for the user state:
if (to.meta.private && !state.user) {

// TODO Redirect to login
}

[200]

Project 3 - Support Center Chapter 5

The next function can be called with a route argument, to redirect the navigation
to another route.

5. So here, we can redirect to the login route just like we would do with the
router.push () method:

if (to.meta.private && !state.user) {
next ({ name: 'login' })
return

Don't forget to return, or you will call next a second time at the end of the
function!

We can now try to log out and click on the support tickets link. You should be immediately
redirected to the login page instead.

When redirecting with next, no additional entry is added to the browser
history for each redirection. Only the final route has a history entry.

As you can see in the browser console, the navigation guard was called each time we try to
resolve to a route:

to tickets

to login

That explains why the function is called next--the resolving process will continue until we
don't redirect to another route.

This means the navigation guard can be called multiple times, but this also
means you should be careful of not creating an infinite "loop" of
resolutions!

[201]

Project 3 - Support Center Chapter 5

Redirecting to the wanted route

After the user is logged in, the app should redirect him to the page they initially wanted to
browse:

1. Pass the current wanted URL as a parameter to the login route:

next ({
name: 'login',
params: {
wantedRoute: to.fullPath,
}!
)

Now if you click on the support tickets link and get redirected to the login page,
you should see the wantedRoute parameter in the $route object on any
component:

data

v $route: Object

fullPath: "/login"

» meta: Object
name: "login”

¥ params: Object

wantedRoute: "/tickets"

path: "/login"

» fquery: Object (empty)

2. In the Login component, we can change the redirection in the 1ogin method and
use this parameter:

this.$router.replace (this.$route.params.wantedRoute | |
{ name: 'home' })

The router.replace () method is very similar to the router.push ()
method, the difference being it replaces the current entry in the browser
history with the new route instead of adding a new entry.

Now if you log in, you should be redirected to the support ticket page instead of the home
page.

[202]

Project 3 - Support Center Chapter 5

Initializing user authentication

When the page load and the application start, we need to check if the user is already
connected. For this reason, the server has a /user path that returns the user object if they
are logged in. We will put it in the global state just like if we logged in. Then, we will start
the Vue app:

1. Inthemain. js file, import $fetch from our plugin:
import VueFetch, { $fetch } from './plugins/fetch'

2. Then we need to create a new asynchronous function called main, inside of which
we will request the user data and then start the app:

async function main () {
// Get user info
try {
state.user = await $fetch ('user')

} catch (e) {
console.warn (e)
}
// Launch app
new Vue ({
el: '#app',
data: state,
router,
render: h => h(AppLayout),
})
}

main ()

Now if you log in and then you refresh the page, you should still be connected!

Guest routes

There is another case we don't manage yet--we don't want an already connected user to
access the login route!

1. That's why we will mark it as a guest route:

{ path: '/login', name: 'login', component: Login,
meta: { guest: true } },

[203]

Project 3 - Support Center Chapter 5

2. Inside the beforeEach navigation guard, we will check if the route is guest-only
and if the user is already connected, then redirect to the home page:

router.beforekach((to, from, next) => {
VAR
if (to.meta.guest && state.user) {
next ({ name: 'home' })
return

}

next ()

})

If you are logged in, you can try going to the login URL--you should be immediately
redirected to the home page! You can only access this page if you are not logged in.

Displaying and adding tickets

In this section, we will add the ticket support content to the app. First we will display them
and then build a form to let the user create new ones. We will have two components for
this, nested in the TicketsLayout component we made earlier.

Don't worry! When you created your account, an example support ticket was automatically
created for your user.

Tickets list

The tickets can be requested at /tickets on the server:

1. Create a new Tickets.vue component that will be pretty much like the FAQ
component.

2. Use the RemoteData mixin to fetch the tickets:

<script>
import RemoteData from '../mixins/RemoteData'

export default {
mixins: |
RemoteData ({
tickets: 'tickets',
Py
J 14
}
</script>

[204]

Project 3 - Support Center Chapter 5

3. Then add the template with a loading animation, an empty message, and the list
of the tickets:

<template>
<div class="tickets">
<Loading v-if="remoteDataBusy"/>

<div class="empty" v-else-if="tickets.length === 0">
You don't have any ticket yet.
</div>

<section v-else class="tickets-list">
<div v-for="ticket of tickets" class="ticket-item">
{{ ticket.title }}
{{ ticket.status }}
{{ ticket.date }}
</div>
</section>
</div>
</template>

We need a filter to display the ticket date!
4. Kill the client compilation and install moment js with the following command:
npm install --save moment
5. Create anew filters. js file next to the main. js file, with a date filter:
import moment from 'moment'
export function date (value) {
return moment (value) .format ('L")
}
6. Theninmain.js, import the filters and register them with a handy loop:
import * as filters from './filters'

for (const key in filters) {
Vue.filter (key, filterslkey])

[205]

Project 3 - Support Center Chapter 5

7. We can now display the dates in a more human-friendly way in the Tickets
component:

{{ ticket.date | date }}

You can then add this new component to the TicketsLayout component and get the list of
tickets:

Your Support tickets

Welcome [

Don't forget to import Tickets and set it in the components option!

Session expiration

After some time, the user session might become no longer valid. This could happen because
of timed expiration (for this server this is set to three hours), or simply because the server
was restarted. Let's try to reproduce this kind of situation--we are going to restart the server
and try to load the tickets again:

1. Make sure you are logged into the application.

2. Type rs and then press Return in the Terminal where the server is running to
restart it.

3. Click on the Home button in the app.

4. Click on the support ticket button to go back to the tickets list page.

[206]

Project 3 - Support Center Chapter 5
You should have a stuck loading animation and an error message in the console:
\
= ol Elements Console Vue Sources Network Performance Memory Application Security — Audits 94
Q | top ¥ | Filter Info v
to tickets router.js?767b:34
to fag router.j
to tickets router. j
© GET http://localhost:3800/tickets 483 (Forbidden)
@ PError: Unauthorized RemoteData. js7487b: 37

The server has returned an unauthorized error--that's because we are no longer logged in!

To fix this, we need to log the user out and redirect them to the login page if we are in a
private route.

The best place to put our code is the $fetch method used in all our components, located in
the plugins/fetch. js file. The server will always return a 403 error when trying to access
a path restricted to connected users.

1. Before modifying the method, we need to import both the state and the router:

'../state'
'../router'

import state from
import router from

2. Let's add a new case in the response processing:

if (response.ok) {

//

} else if
// I1f
// We
state
// If the route is private
// We go to the login screen
if (router.currentRoute.matched.some (r => r.meta.private)) {

router.replace({ name: 'login', params: {

(response.status === 403) {
the session is no longer valid
logout

.user = null

[207]

Project 3 - Support Center Chapter 5

wantedRoute: router.currentRoute.fullPath,
)
}
} else {
//
}

We use the replace method instead of push because we don't want to
create a new navigation in the browser history. Imagine if the user clicks
the back button, it will redirect again to the login page and the user will
not be able to go back to the page before the private one.

You can now try again--when you restart the server and click on the support tickets link,
you should be redirected to the login page and the navigation menu should not display
your username anymore.

Nested routes

Since we also want to switch to a form in this page, it would be a good idea to structure our
components with nested routes--each route can have child routes if they have at least a
router view! So under the /tickets router, we will have two children for now:

e ' ' will be the tickets list (full path will be /tickets/). It acts like the default
route under /tickets.

e ' /new' will be the form to send new tickets (full path will be /tickets/new/).

1. Create a new NewTicket .vue component with a temporary template:

<template>
<div class="new-ticket">
<h1>New ticket</h1>
</div>
</template>

2. Inthe routes. s file, add the two new routes under the /tickets route inside
the children attribute:

import Tickets from './components/Tickets.vue'
import NewTicket from './components/NewTicket.vue'

const routes = [
//
{ path: '/tickets', component: TicketsLayout,
meta: { private: true }, children: |

[208]

Project 3 - Support Center

Chapter 5
{ path: '', name: 'tickets', component: Tickets },
{ path: 'new', name: 'new-ticket', component: NewTicket },
1}

Since the first child route is an empty string, it will be the default when the
parent route is resolved. This means you should move the name of the
route ('tickets') from the parent to it.

3. Finally, we can change the TicketsLayout component to use a router view
along with a few buttons to switch between the child routes:

<template>
<main class="tickets-layout">
<hl1>Your Support tickets</hl>
<div class="actions">
<router-link
v-if="$route.name !== 'tickets'"
tag="button"
class="secondary"
:to="{name: 'tickets'}">
See all tickets
</router-link>
<router-link

v-if="S$route.name !== 'new-ticket'"
tag="button"
:to="{name: 'new-ticket'}">

New ticket
</router-link>
</div>
<router-view />
</main>
</template>

You can use the tag prop on router links to change the HTML tag used to
render it.

As you can see, we hide each button depending on the current route name--we don't want
to display the Show tickets button when we are already on the tickets page, and we don't
want the New ticket button when we are already on the corresponding form!

[209]

Project 3 - Support Center Chapter 5

You can now switch between the two child routes and see the URL change accordingly:

| EullmeEw || — | =
_/ [vue App x\\ \
& C | @ localhost:4000/tickets/new g
® dal Elements Console Vue Sources Network Performance Memory Application Security Audits F 4
v Ready. Detected Vue 2.4.1. = Components £ Vuex = Events C' Refresh
Q, Filter components NewTicket @ Inspect DOM Q, Filter inspected data
v <Root
v <Applayout data
» <NavMenu » $route: Object
v <Ticketslayout - (EIEREIIEEEE
RouterLink
<NewTicket > == $vme |router-view: /tickets/new

[210]

Project 3 - Support Center Chapter 5

Fixing our navigation guard

If you log out and then go to the tickets page, you should be surprised to be able to access
the page! This is because there is a flaw in the implementation of our beforeEach
navigation guard--we poorly designed it without taking into account the fact we could have
nested routes! The reason for this issue is that the to parameter is only the target route,
which is the first child route of the /tickets route--it doesn't have the private meta
attribute!

So instead of relying solely on the target route, we should also check all the matched nested
route objects. Thankfully, every route object gives us access to the list of these route objects
with the mat ched property. We can then use the some array method to verify if at least one
route object has the desired meta attribute.

We can change the conditions code to this in the be foreEach navigation guard in the
router. js file:

router.beforeEach((to, from, next) => {

if (to.matched.some(r => r.meta.private) && !state.user) {
VA

}

if (to.matched.some(r => r.meta.guest) && state.user) {
//

}

next ()

Now our code works regardless of the number of nested routes!

It is strongly recommended to use this approach with the matched
property every time to avoid errors.

[211]

Project 3 - Support Center Chapter 5

Sending a form

In this section, we are going to complete the NewTicket component that will allow the user
to send a new support ticket. We need two fields to create a new ticket--title and

description:

1. In the template of the NewTicket .vue component, we can already add a
SmartForm component with the title InputForm component:

<SmartForm
title="New ticket"
:operation="operation"
:valid="valid">
<FormInput
name="title"
v-model="title"
placeholder="Short description (max 100 chars)"
maxlength="100"
required/>
</SmartForm>

2. We can also add the two data properties, the operation method and some input
validation with the valid computed property:

<script>
export default {
data () {
return {
title: '',
description: '',
}
by
computed: {
valid () {
return !!this.title && !!this.description
by
by
methods: {
async operation () {
// TODO
by
by
}

</script>

[212]

Project 3 - Support Center Chapter 5

Form textarea

For the description field, we need a <textarea> element so the user can write a
multiline text. Unfortunately, our FormInput component doesn't support this yet, so we
need to modify it a bit. We will use the type prop of the component with the value
'textarea' to change the <input> element to a <textarea> element:

1. Let's create a new computed property to determine which kind of HTML element
we are going to render:

computed: {
//
element () {
return this.type === 'textarea' ? this.type : 'input'
by
by

So when the value 'textarea’ is passed, we need to render a <textarea>. All
the other types will make the component render an <input> element.

We can now use the special <component> component, which can render either
elements with the is prop, instead of the static <input> element.

2. The line in the template should now look like this:

<component
:is="element"
class="input"
:class="inputClass"
:name="name"
type="type"
:value.prop="text"
@input="update"
:placeholder="placeholder"
/>

3. We can now add the description textarea to the NewTicket form just after the
title input:

<FormInput
type="textarea"
name="description"
v-model="description"
placeholder="Describe your problem in details"/>

[213]

Project 3 - Support Center Chapter 5

Binding attributes

Among other elements, <textarea> has some handy attributes we would like to use, such
as the rows attribute. We could create a prop for each of them, but this could become
tedious very quickly. Instead, we are going to use the handy $attrs special property of the
Vue component, which gets all the non-prop attributes set on the component as an object
with the keys being the names of the attributes.

This means that if you have let's say, one text prop on your component and that you write
this in another component:

<FormInput :text="username" required>

Vue will treat required as an attribute, since it is not in the list of props exposed by the
FormInput component. Then you can access it with sattrs.required!

The v-bind directive can get an object with the keys being the names of the props and
attributes to set. This will be very useful!

1. We can write this on <component> in the FormInput .vue component:
<component
v-bind="$attrs" />

2. Now you can add the rows attribute on the description input in the
NewTicket .vue component:

<FormInput
rows="4"/>

You should see in the rendered HTML that the attribute has been set on the <textarea>
element inside the FormInput component:

<textarea data-v-ae2eb904="" type="textarea" placeholder="Describe your
problem in details" rows="4" class="input"></textarea>

[214]

Project 3 - Support Center Chapter 5

User actions

We will now implement the few actions the users will be able to do in the form:
1. In the SmarForm component, add these two buttons after the inputs:

<template slot="actions">
<router-link
tag="button"
:to="{name: 'tickets'}"
class="secondary">
Go back
</router-1link>
<button
type="submit"
:disabled=""!valid">
Send ticket
</button>
</template>

2. Then implement the operation method, which will be similar to what we have
done in the Login component. The server path we need to send the POST request
tois /tickets/new:

async operation () {
const result = await this.$fetch('tickets/new', {
method: 'POST',
body: JSON.stringify ({
title: this.title,
description: this.description,
P
})
this.title = this.description = "'
}I

You can now create new tickets!

[215]

Project 3 - Support Center Chapter 5

Backup user input

To improve the user experience, we should automatically back up what the user has typed
into the form in case something goes wrong--for example, the browser could crash or the
user could accidentally refresh the page.

We are going to write a mixin that will automatically save some data properties into the
browser local storage, and restore them when the component is created:

1. Create anew PersistantData. s file in the mixins folder.

2. Like the other mixin we did, it will have some parameters, so we need to export it
as a function:

export default function (id, fields) {
// TODO
}

The id argument is the unique identifier to store the data for this specific
component.

First we are going to watch all the fields passed in the mixin.

3. For that, we will dynamically create the wat ch object, with each key being the
field and the value being the handler function that will save the value into the
local storage:

return {
watch: fields.reduce((obj, field) => {
// Watch handler
obj[field] = function (val) |
localStorage.setItem(${id}.${field} , JSON.stringify(val))
}
return obj

oo ANy

[216]

Project 3 - Support Center Chapter 5

4. Go back to the NewTicket component and add the mixin:
import PersistantData from '../mixins/PersistantData’

export default {
mixins: |
PersistantData ('NewTicket', [
'title',
'description’',

So, the mixin added watchers to the component with the reduce producing the
equivalent of this:

{

watch: {
title: function (val) {
let field = 'title'

localStorage.setItem(${id}.${field} , JSON.stringify(val))
}I
description: function (val) {
let field = 'description'
localStorage.setItem(${id}.${field} , JSON.stringify(val))
}I
}I
;

We are saving the property values as JSON since the local storage only
supports strings.

[217]

Project 3 - Support Center

Chapter 5

You can try typing into the fields, and then look at the browser dev tools to see
that two new local storage items have been saved:

Storage
¥ EE Local Storage

£E http://localhost:4000
» EE Session Storage

-

L= dno

New ticket
Foo
Bai
)
Go back Send ticket
& ol Elements Console Vue Sources Network Performance Memory Application Security Audits
Application C © X |Filter
[Manifest Key Value
AX Service Workers MewTicket.description "Bar’
W Clear storage MewTicket. title "Foo"

[218]

Project 3 - Support Center Chapter 5

5. In the mixin, we can also save the fields when the component is destroyed:

methods: {
saveAllPersistantData () {
for (const field of fields) {
localStorage.setItem(${id}.S${field}",
JSON.stringify (this.S$data[field]))
}
}!
}!
beforeDestroy () {
this.saveAllPersistantData ()
}!

6. Finally, we need to restore the values when the component is created:

created () {
for (const field of fields) {

const savedValue = localStorage.getItem(${id}.${field}")
if (savedValue !== null) {

this.$data[field] = JSON.parse (savedValue)
}
}
}I

Now if you type something into the form, and then refresh the page, what you typed
should be still in the form!

With the session expiration management we added to $fetch, you will be
redirected to the login page if you try to send your new ticket while you

are no longer connected. Then, once you're logged in again, you should be
right back to the form with what you typed still there!

Advanced routing features

This is the last section of this chapter, in which we will explore routing a bit more!

[219]

Project 3 - Support Center Chapter 5

Dynamic routes with parameters

The last component we will add in the application is Ticket, which display a detailed view
of one ticket by its ID. It will show the title and description inputted by the user, plus the
date and the status.

1. Create anew Ticket.vue file and add this template with the usual loading
animation and not found notice:

<template>
<div class="ticket">
<h2>Ticket</h2>

<Loading v-if="remoteDataBusy"/>
<div class="empty" v-else-if="!ticket">
Ticket not found.
</div>
<template v-else>
<!—-— General info —-—>
<section class="infos">
<div class="info">
Created on {{ ticket.date | date }}
</div>
<div class="info">
Author {{ ticket.user.username }}
</div>
<div class="info">
Status {{ ticket.status }}
</div>
</section>
<!-- Content -->
<section class="content">
<h3>{{ ticket.title }}</h3>
<p>{{ ticket.description }}</p>
</section>
</template>
</div>
</template>

[220]

Project 3 - Support Center

Chapter 5

2. Then add an id prop to the component:

<script>
export default {
props: {
id: {
type: String,
required: true,
o
o
}

</script>

Dynamic remote data

The id prop will be the ID of the ticket for which we will fetch the details. The server
provides a dynamic route in the form of /ticket/<id>, with <id> being the ID of the

ticket.

It would be nice to be able to use our RemoteData mixin, but it currently lacks support for
dynamic paths! What we could do is to pass a function instead of a plain string as the

values of the mixin's parameter:

1. In the RemoteData mixin, we just need to modify the way we process the
parameter in the created hook. If the value is a function, we will use the $Swatch
method to watch its value instead of directly calling the fet chResource method:

created () {
for (const key in resources) {
let url = resourceslkey]

// If the value is a function

// We watch its result

if (typeof url === 'function')
this.$watch (url, (val) => {

this.fetchResource (key, wval)

oo A
immediate: true,

})
} else {
this.fetchResource (key, url)

}

by

[221]

Project 3 - Support Center Chapter 5

Don't forget the immediate: true option for the watcher since we want
to call fetchResource a first time before watching the value.

2. In the Ticket component, we can now use this mixin to load the data of the
ticket depending on the id prop:

import RemoteData from '../mixins/RemoteData'

export default {
mixins: [
RemoteData ({
ticket () {
return “ticket/${this.id}"
}I

Let's try this in the Tickets component.
3. Add the new Ticket component to it with a new id data property:
import Ticket from './Ticket.vue'

export default {
/).
components: {
Ticket,
}I
data () {
return {
id: null,
}
}I
}

4. Then in the template, add a Ticket component:

<Ticket v-if="id" :id="id"/>

[222]

Project 3 - Support Center Chapter 5

5. In the ticket list, change the title to a link that sets the id data property on click:
<a @click="id = ticket._id">{{ ticket.title }}

If you click on the tickets in the application, you should have the details in the following
list:

Waf (20
Meow (20

Test (0
Ticket

05/28/2017
abc

Warf

Voluptas dolor accusamus nesciunt tenetur tempora repudiandae. Doloribus ea ut consequuntur aut est.
Dignissimos neque expedita et et. Cumgue sapiente cupiditate modi nam atque pariatur consequatur. In
magnam velit dolores. Repellat culpa dignissimos ad quo libero dolorum minima. Quos veniam et natus

The dynamic route

Since we are going to put the ticket details in another route, you can undo what we just did
in the Tickets component.

The route will be a child route of the tickets route, and will be of the form /tickets/<id>
where <id> is the ID of the ticket being displayed. This is possible thanks to the dynamic
route matching feature of vue-router!

[223]

Project 3 - Support Center Chapter 5

You can add dynamic segments to your route path with the semicolon. Then, each segment
will be exposed in the route params object. Here are some examples of routes with
parameters:

Sroute.params

Pattern Example path value

/tickets/:1id /tickets/abc { id: ‘'abc' }

{ id: 'abc',

/tickets/:id/comments/:comId|/tickets/abc/comments/42
comId: '42' }

1. Let's add the new route in the router. js file as a child route of /tickets:
import Ticket from './components/Ticket.vue'

const routes = [
//
{ path: '/tickets', component: TicketsLayout,
meta: { private: true }, children: [
//
{ path: ':id', name: 'ticket', component: Ticket },
1}
]

2. In the Tickets component list, we need to change the title element to a link
pointing to the new route:

<router-link :to="{name: 'ticket', params: { id: ticket._id }}">
{{ ticket.title }}</router-link>

Now if you click on a ticket, the $route.params object will have the id property
set to the of the ticket.

[224]

Project 3 - Support Center Chapter 5

We could change our Ticket component to use this with a computed property
instead of a prop:

computed: {
id () |
return $route.params.id
}I
}I

But this is a bad idea--we are coupling the component to the route! This means we
won't be able to reuse it in another way easily. The best practice is to use props to
pass info to components, so let's continue to do that!

3. So we are going to keep the ID prop of the Ticket component and tell vue-
router to pass all the route parameters to it as prop with the props attribute:

{ path: ':id', /* ... */, props: true },

This is equivalent to this more flexible syntax based on a function that gets the
route object as the argument:

{ path: ':id', /* ... */, props: route => ({ id: route.params.id })
|

Another syntax based on an object exists too (useful when the props are static):
{ path: ':id', /* ... */, props: { id: 'abe' } },

We won't use this third syntax since our id prop should be equal to the dynamic parameter
of the route.

If you need to combine static and dynamic props, use the function syntax!
This is also useful if the route parameters and the component props names
don't match.

[225]

Project 3 - Support Center

Chapter 5

Now, the id parameter is passed as a prop to the component and you should see the ticket

details page when clicking on a ticket in the list:

| ey | — | & 2
_/D Vue App x\\ \
< C | © localhost:4000/tickets/MGPvjSHdagN7LIKZ g
See all tickets New ticket
Ticket
05/28/2017
abc
Waf
Woluptas dolor accusamus nesciunt tenetur tempora repudiandae. Doloribus ea ut consequuntur aut est.
& ol Elements Console Vue Sources Network Performance Memory Application Security Audits x
v Ready. Detected Vue 2.4.1. A Components £ Vuex #% Events C' Refresh
Q, Filter components Ticket @ Inspect DOM @ Filter inspected data
v <AppLayout =
» <NavMenu data props
v <TicketslLayout » Broute: Object id: "MGPvjSHdagN7LiKZ"
RouterLink remoteDataloading: @
RouterLink w remoteErrors: Object
<Ticket> == svme |router-view: /tickets/:id ticket: null
p ticket: Object
computed
hasRemoteErrors: false
remoteDataBusy: false

[226]

Project 3 - Support Center Chapter 5

Not found page

Currently, if you enter an invalid URL into the app, you are greeted with a boring blank
page. This is the default behavior of vue-router, but it can thankfully be changed! We will

now customize the "not found" page of our app!

1. Let's create a better "not found" page with a new NotFound. vue component:

<template>
<main class="not-found">
<h1>This page can't be found</h1>

<p class="more-info">
Sorry, but we can't find the page you're looking for.

It might have been moved or deleted.

Check your spelling or click below to return to the
homepage.

</p>

<div class="actions">
<router-link tag="button" :to="{name:
home</router—-link>

</div>

</main>
</template>

'home'}">Return to

<style lang="stylus" scoped>

.more-info {
text-align: center;

}
</style>

2. Now in the router. js file, we just need to add a new route matching the ' »'

path:

import NotFound from './components/NotFound.vue'

const routes = [

//
{ path: '*', component: NotFound },

]
This means that for any route, we display the Not Found component. The very important
fact is that we put this route at the end of the routes array--this ensures that all the legit
routes will be matched before matching this last particular, catch-all route.

[227]

Project 3 - Support Center Chapter 5

You can now try a URL that doesn't exist, like / foo, to have the page displayed:

Home FAQ Support tickets abc Logout

This page can't be found

Sorry, but we can't find the page you're looking for.
It might have been moved or deleted.
Check your spelling or click below to return to the homepage.

Return to home

Transitions
Animating the route changes is very easy--this is done in exactly the same way we did
before:

e In the AppLayout component, wrap the router view with this transition:

<transition name="fade" mode="out-in">
<router-view />
</transition>

The router-view special component will be replaced by the different component of the
routes we have, and thus trigger the transition.

Scrolling behavior

The history mode of the router allows us to manage the page scrolling when a route
changes. We can reset the position to the top every time, or restore the position the user was
in before changing the route (this is very useful when they go back in the browser).

[228]

Project 3 - Support Center Chapter 5

When creating the router instance, we can pass a scrol1lBehavior function that will get
three arguments:

e to is the target route object.
e fromis the previous route object.
® savedPosition is the scroll position that has been automatically saved for each

entry in the browser history. Each new entry will not have this until the route
changes.

The scrollBehavior function expects an object that can take two different forms. The first
is the coordinate of the scroll we want to apply; for example:

{ x: 100, y: 200 }

The second one is a selector of the HTML element we want the page to scroll to, with an
optional offset:

{ selector: '#foo', offset: { x: 0, y: 200 } }
1. So to scroll to the top of the page when the route changes, we need to write this:

const router = new VueRouter ({
routes,
mode: 'history',
scrollBehavior (to, from, savedPosition) {
return { x: 0, y: 0 }
}I
})

To scroll to the <h1> element each time, we could do this:
return { selector: 'hl' }
2. Instead, we will check if the route has a hash to mimic the browser behavior:
if (to.hash) {

return { selector: to.hash }

}
return { x: 0, y: 0 }

[229]

Project 3 - Support Center Chapter 5

3. Finally, we can restore the scroll position if there is any:

if (savedPosition) {
return savedPosition

}
if (to.hash) {
return { selector: to.hash }

}
return { x: 0, y: 0 }

It's that simple! The app now should behave like an old multi-page website. You can then
customize the way the scroll behaves with offset or route meta properties.

Summary

In this chapter, we created a fairly big application with the help of Vue and the official vue-
router library. We created a few routes and connected them with links that turned into a
real navigation menu. Then, we created a generic and reusable component to build the
application forms, which helped us make the login and signup forms. We then integrated
the user authentication system with the router, so our application could react in smart ways
to page refreshes or session expirations. Finally, we went deeper into the features and
capabilities of vue-router to enhance our application and user experience even further.

We are done with the app, but feel free to improve it on your own! Here are some ideas you
could implement:

e Add comments to the tickets. Display the list of comments with the name of the
corresponding user.

¢ Add close this ticket button, preventing users from adding new comments.
¢ Display a special icon next to a closed ticket in the tickets list!

e Add roles to users. For example, normal users could open tickets, but only admin
users could close them.

In the next chapter, we will create a geolocated blogging application and we will learn how
to scale our apps more with a centralized state solution and how to integrate third-party
libraries to extend the features of Vue.

[230]

Project 4 - Geolocated Blog

In this chapter, we will build our fourth app. We will cover new topics, such as:

e Managing the state of the app in a centralized store using the official Vuex library
Using the Google OAuth API to connect our users to the app

¢ Integrating Google Maps to our app with the vue-googlemaps third-party
library

Rendering functions and JSX

Functional components--making lighter and faster components

The app will be a Geolocated Blog that will mainly display a big map where the user will
add blog posts. Here are the main features of the app:

¢ Alogin page will ask the user to authenticate using their Google account

¢ The main view will be a Google map embeded in the app, with a marker for each
post

¢ Clicking on the markers will display the content in a side panel to the right, with
the description of the location, the post, a like counter, and a list of comments

e Clicking anywhere else on the map will display a form in the side panel so the
user can create a new post at this location

¢ The top bar of the application will display the current user's avatar and name,
with a button to center the map on their position and another to log out

Project 4 - Geolocated Blog Chapter 6

The final application will look as follows:

9 GeoBlog
’ ES 5 ° =, .
Plan Satellite 5 o ;j ’%/_ 9 Restaljlr?r_n 310 ? ta_b\e .
% g o S@% @ Colirtepaille Piert IE_‘r-.|.:. 145 Boulevard de I'Europe, 69310 Pierre-
= i Bénite, France
%g,
5% ey
I Rue Hen™ i ‘%s L7 5 .
-)) My favorite restaurant
£ 4 Pierre-Bénite ’%sg < Guillaume CHAU 09/10/2017
IS : = o
5 2 ? Ry . .
ntre Hospitalier Ea R 3 Pty This is the right place to eat! The
-] 2 o b= @) . . .
on-Sud-HCL e ; 3 Y service is very nice and the dishes are
i 1945 5 S
2 que du 8 Mal L RS & tasty and generous.
i 5 ;
& s g 5 You can have a full set menu (starter +
¥ & = P
NS ® , Z = A main course + dessert + coffee or tea)
! ' © e
2 * g g for 28€ and you can choose almost
£ 5 anything on the entire menu!
Rue Jules g, & £
Ll s = &
! :5 & Guillaume CHAU 09/10/2017
Stef saint genis laval z icel
g & .- . EE Seems very nice!
o) s " i 09/10/" =
ax\'\k‘-‘\c"a 9 Opurn des Mariers ~ R Gmlaur'e',HAU 09/10/2017
o & s ! Would like to go someday
& i -
£ 4350
& . @?}“ 5 +
o R
- X Type a comment
GO gle Données cartographiques ©2017 Google Conditions diutilisation | Signaler une erreur cartographigue

Google Auth and state management

In this first section, we will create our first Vuex store to help us manage the state of our
application. We will use it to store the current user logging in through the Google OAuth
API, which allows them to use their Google account to connect to our app.

Project setup

First, let's set up the basic structure of our new project. We will continue using the router
and a few parts of chapter 5, Project 3 - Support Center.

[232]

Project 4 - Geolocated Blog

Chapter 6

Creating the app

In this section, we will setup the base app structure for our Geolocated Blog.

1. Like we did in chapter 5, Project 3 - Support Center, we will initialize a Vue

project with vue-init and install the babel, routing, and stylus packages:

vue init webpack-simple geoblog

cd geoblog

npm install

npm install —--save vue-router babel-polyfill

npm install —--save-dev stylus stylus—-loader babel-preset-vue

Don't forget to add the "vue" preset in the .babelrc file.

2. Then remove the content of the src directory.

3. We will reuse the $fetch plugin we made in chapter 5, Project 3 - Support

4.

Center, so copy the src/plugins/fetch. js file too in the new project.

In the src folder, add the main. js file that starts our app like we did in chapter
5, Project 3 - Support Center:

import 'babel-polyfill'

import Vue from 'vue'

import VueFetch, { $fetch } from './plugins/fetch'
import App from './components/App.vue'

import router from './router'

import * as filters from './filters'

// Filters
for (const key in filters) {

Vue.filter (key, filterslkey])
}

Vue.use (VueFetch, {

baseUrl: 'http://localhost:3000/",
})

function main () {
new Vue ({

...App,
el: '#app',

[233]

Project 4 - Geolocated Blog Chapter 6

router,
})
}

main ()

5. We will still use moment . js to display dates, so you can install it with this
command:

npm i —-S moment

This shorter notation is equivalent to npm install --save.For
development dependencies, you can use npm i -D instead of npm
install --save-dev.

6. Create the same simple date filter as before in anew src/filters. js file:
import moment from 'moment'

export function date (value) {
return moment (value) .format ('L")

}

7. In the $fetch plugin, you can remove the references to the state. js file since
we won't have one this time:

// Remove this line
import state from '../state'

8. Also the way we log out the user if a request receives a 403 HTTP code will be
different, so you can remove the relevant code too:

} else if (response.status === 403) {
// If the session is no longer valid
// We logout
// TODO

} else {

9.Iﬁnaﬂy,dow&ﬂoad(https://github.com/Akryum/packt—vue—project—guide/
tree/master/chapter6—full/client/src/styles)arKipuitheH1h1a
src/styles directory.

[234]

https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-download/styles

Project 4 - Geolocated Blog Chapter 6

Some routing
The app will have three pages:

e The login page with a Sign in with Google button
¢ The main Geolocated Blog page with the map
¢ A "not found" page

We will now create the main component and set up those pages with bare components:

1. Create a new src/components folder and copy the NotFound. vue component
from chapter 5, Project 3 - Support Center .

2. Then add the App. vue file with the router-view component and the main
stylus file:

<template>
<div class="app">
<router-view />
</div>
</template>

<style lang="stylus">
@import '../styles/main';

</style>

3. Add the GeoBlog. vue file, which will be pretty bare for now:

<template>
<div class="geo-blog">
<!-— More to come —-—>
</div>
</template>

4. Add the Login.vue file with the Sign in with Google button. The button calls an
openGoogleSignin method:

<template>
<div class="welcome">
<h1>Welcome</h1>

<div class="actions">
<pbutton @click="openGoogleSignin">
Sign in with Google
</button>
</div>

[235]

Project 4 - Geolocated Blog Chapter 6

</div>
</template>

<script>
export default {
methods: {
openGoogleSignin () {
// TODO
}I
}I
}
</script>

5. Create a router. js file similar to what we did in chapter 5, Project 3 - Support
Center. It will contain the three routes:

import Vue from 'vue'
import VueRouter from 'vue-router'

import Login from './components/Login.vue'
import GeoBlog from './components/GeoBlog.vue'
import NotFound from './components/NotFound.vue'

Vue.use (VueRouter)

const routes = |

{ path: '/', name: 'home', component: GeoBlog,
meta: { private: true } },
{ path: '/login', name: 'login', component: Login },

{ path: '*', component: NotFound },

const router = new VueRouter ({
routes,
mode: 'history',
scrollBehavior (to, from, savedPosition) {
if (savedPosition) {
return savedPosition
}
if (to.hash) {
return { selector: to.hash }
}
return { x: 0, y: 0 }
}I
})

// TODO Navigation guards

[236]

Project 4 - Geolocated Blog Chapter 6

// We will get to that soon
export default router

The router should be already imported in the main file and injected in the application. We
are now ready to continue!

State management with Vuex

This is the exciting section of this chapter where we will use the second very important
official Vue library--Vuex!

Vuex allows us to use a centralized store to manage the global state of our app.

Why do | need this?

The big question is why we need a centralized state management solution in the first place.
You may have noticed in the previous projects that we have already used a very simple
state. js file with an object containing the global data we needed across our components.
Vuex is the next step in that direction. It introduce a few new concepts to help us manage
and debug the state of our application in a formal and efficient way.

When your application grows, you or your team will add many more features and
components (maybe well over a hundred). Lots of them will share data. With the increasing
complexity of the interconnections between your components, you will end up with a mess,
with too many components whose data you need to keep in sync. At this point, the state of
your app will no longer be predictable and understandable, and your app will become very
difficult to evolve or maintain. For example, imagine that a button buried inside four or five
components in the component tree needs to open a side panel located in the far opposite--
you may have to use a lot of events and props to pass the information up and down
through many components. You effectively have two sources of truth, which means the two
components share data that has to be somehow in sync or else your app breaks because you
no longer know which component is right.

Project 4 - Geolocated Blog Chapter 6

The recommended solution to this problem is Vuex, from Veu. It is inspired by the Flux
concept that Facebook developed, which gave birth to the Redux library (well known in the
React community). Flux is a set of guiding principles that emphasize the use of a one-way
flux of information through the components with a centralized store. The benefits are that
your application logic and flow will be easier to reason about, so it improves
maintainability by a great margin. The downside is that you may have to understand some
new concepts and incidentally write a little more code. Vuex effectively implements some of
these principles to help you improve the architecture of your applications.

A real example of this was the Facebook notification system--the chat system was complex
enough that it was difficult to determine what message you had seen. Sometimes, you
might get a notification for a new message you already read, so Facebook worked on this
Flux concept to fix this issue by changing the application architecture.

For our first example, the button and the side panel component don't need to synchronize
their state across the whole application. Instead, they use the centralized store to get data
and dispatch actions--this implies they don't need to know each other and they don't rely on
their ancestors or children components to synchronize their data. It mean there is now a
single source of truth, which is the centralized store--you don't need to keep data in sync
between components anymore.

(centralized smre)

We will now architect our applications around the Vuex library and its principles.

Vuex is recommended for most applications, but you don't have to use it if
it's not necessary, in very small projects such as prototypes or simple
widgets.

[238]

Project 4 - Geolocated Blog

The Vuex Store

The central element of Vuex is the store. It is a special object that allows you to centralize
the data of your app into a model that follows good design-patterns and helps prevent
errors like we saw in the previous section. It will be the main architecture of our data and

what we do with it.

The store contains the following:

e The state, which is a reactive data object that holds the state of your app

¢ Getters, which are the equivalent of computed properties for the store

e Mutations, which are functions used to modify the application state

¢ Actions, which are functions that usually call asynchronous APIs and then

mutations

So a store should look like this:

Backend API

Dispatch Commit

Vue Components

Render Mutate

...

[239]

Project 4 - Geolocated Blog Chapter 6

That's a lot of new vocabulary to understand, so let's create a store while walking through
these new concepts. You will see that it's not as difficult as it might seem:

1. Download vuex with the npm i -S vuex' command.Create a new store folder
and add a index. js file that installs the Vuex plugin:

import Vue from 'vue'
import Vuex from 'vuex'

Vue.use (Vuex)
2. Create the store with the vuex . Store constructor:

const store = new Vuex.Store ({
// TODO Options
)

3. Export it as default like we do for the router:
export default store
4. In the main main. js file, import the store:

import store from './store'

Webpack will detect that store is a folder and will automatically import
the index. s file inside it.

5. To enable the store in our application, we need to inject it just like the router:

new Vue ({
.. .App,
el: '#app',
router,
// Injected store
store,

})

6. All the components now have access to the store with the $store special
property, similar to vue-router special objects such as $router and $route.
For example, you could write this inside a component:

this.$store

[240]

Project 4 - Geolocated Blog Chapter 6

The state is the source of truth

The main piece of the store is its state. It represents the data shared across the components
of your app. The first principle is—-this is the single source of truth for your shared data.
Since components will all read data from it, and it will always be right.

For now, the state will only have a user property, which will contain the logged user data:
1. In the store options, add to the state a function that returns an object:

const store = new Vuex.Store ({
state () {
return {
user: null,
}
}I
)

Also, the next very important principle is--the state is read-only. You shouldn't
modify the state directly, or else you lose the benefits of using Vuex (which is to
make the shared state easy to reason about). If you have lots of components
modifying the state as they wish anywhere in the app, it will be harder to follow
the flow of the data and debug it using the dev tools. The only valid way of
changing the state is through mutations, as we will see in a moment.

2. To try reading the state, let's create the AppMenu.vue component in the
components folder. It will display user info, the center-on-user button, and
the 1logout button:

<template>
<div class="app-menu">
<div class="header">
<i class="material-icons">place</i>
GeoBlog
</div>

<div class="user">

<div class="info" v-if="user">

{{ user.profile.displayName }}

</div>

<a @click="centerOnUser"><i class="material-

[241]

Project 4 - Geolocated Blog Chapter 6

icons">my_location</i>

<a @click="logout"><i class="material-
icons">power_settings_new</i>

</div>
</div>
</template>

<script>
export default {
computed: {
user () |
return this.S$store.state.user
}I
userPicture () {
return null // TODO
}I
}I
methods: {

centerOnUser () {
// TODO
}I
logout () {
// TODO
}I
}I
}
</script>

The user object will have a profile property from Google, with the display
name and the photo of the user.

3. Add this new AppMenu component in GeoBlog.vue :

<template>
<div class="geo-blog">
<AppMenu />
<!-- Map & content here -->
</div>
</template>

<script>
import AppMenu from './AppMenu.vue'

[242]

Project 4 - Geolocated Blog Chapter 6

export default {
components: {
AppMenu,
}I
}
</script>

For now our user is not logged in, so nothing is displayed.

Mutations update the state

As we consider the state as read-only, the only way to modify it is through mutations. A
mutation is a synchronous function that takes the state as the first argument and an optional
payload argument, and then updates the state. It means you are not allowed to do
asynchronous operations (like a request to the server) in a mutation:

1. Let's add our first mutation, of type 'user', which will update the user in the

state:
const store = new Vuex.Store ({
state () { /* ... */ },

mutations: {
user: (state, user) => {
state.user = user
b
b
})

Mutations are very similar to events--they have a type (here it's 'user")
and a handler function.

The word used to indicate that we are calling a mutation is commit. We can't
directly call them--it's like events, we ask the store to trigger the mutations
corresponding to a specific type.

To invoke our mutation handler, we need to use the commit store method:

store.commit ('user', userData)

[243]

Project 4 - Geolocated Blog Chapter 6

2. Let's try this in the 1logout function in the AppMenu component so we can test the
mutation:

logout () {
// TODO
if (!this.user) {
const userData = {
profile: {
displayName: 'Mr Cat',

by
}

this.$store.commit ('user', userData)
} else {
this.$store.commit ('user', null)

}
by

Now if you click on the logout button, you should see the user info being toggled.

Strict mode

Mutations are synchronous for debugging reasons. The way the state is handled makes it
easy to track it and debug faulty behavior in the application since the dev tools can take
snapshots of it. But if your mutations make asynchronous calls, then the debugger has no
way to tell what the state is before and after the mutation, making it untraceable:

1. To help you avoid modifying the state outside synchronous mutations, you can
enable strict mode like this:

const store = new Vuex.Store ({
strict: true,
//

})

This will throw an error when the state is modified outside of a synchronous
mutation preventing the debugging tools from working correctly.

You shouldn't enable strict mode in production, since it will have an
impact on performance. Use this expression to do that--strict:
process.env.NODE_ENV !== 'production', which will ensure the
NODE_ENV standard environment variable tells you in which development
mode you are (usually development, testing, or production).

[244]

Project 4 - Geolocated Blog Chapter 6

2. Let's try changing the state directly in the 1ogout test method:

logout () A
if (!'this.user) {

//
this.$store.state.user = userData
} else {
this.$store.state.user = null
}
}I

Then click again on the logout button and open the browser console--you should
see that Vuex has thrown errors because you are modifying the state outside of
proper mutations:

@ Pk [Vue warn]: Error in callback for watcher "function () { return this. data.$%state }": "Error: [vuex] Do
not mutate vuex store state outside mutation handlers."”

Time-travel debugging

One of the benefits of using the Vuex approach is the debugging experience. In more
complex apps, this is very useful to track the state of the app mutation-by-mutation.

Revert to the mutations call in the 1ogout method. Click a few times on the logout button,
then open the Vue dev tools and open the Vuex tab. You should see a list of mutations that
were committed to the store:

v Ready. Detected Vue 2.4.2 A Components 4D Vuex = E'-:&'TtS@ C Refresh
Q, Filter mutations * Ccommit Al © Revertal @ Recording _:| Export D mport
Base State B1:41:1 state getters -

w user: Object
user : » profile: Object

user

mutation

inspected active | A¥:15:32

type: "user"
¥ payload: Object
p profile: Object

[245]

Project 4 - Geolocated Blog Chapter 6

On the right, you can see the state that was recorded for the selected mutation and its
payload (the argument passed to it).

You can go back to any state snapshot by hovering over a mutation and clicking on the
Time Travel icon button:

user * & £

vel| to This State

wJBCted active | 17:15:32

Your app will be back in the state it was originally! You can now go step-by-step and replay
the evolution of the app state as the mutations are committed.

Getters compute and return data

Getters work like computed properties for the store. They are functions that take the state
and the getters as arguments, and return some state data:

1. Let's create a user getter that returns the user held by the state:

const store = new Vuex.Store ({
/] ...
getters: {
user: state => state.user,
}I
})

2. In our AppMenu component, we can use this getter instead of accessing the state
directly:

user () {
return this.$store.getters.user
b

[246]

Project 4 - Geolocated Blog Chapter 6

This doesn't seem to be different from before. But accessing the state directly isn't
recommended--you should always use getters since it allows you to modify the
way you get the data without having to change the components using it. For
example, you can change the structure of the state and adapt the corresponding
getters without having an impact on the component.

3. Let's also add a userPicture getter that we will implement later when we have
the real Google profile:

userPicture: () => null,
4. In the AppMenu component, we can already use it:

userPicture () {
return this.$store.getters.userPicture
Fy

Actions for store operations

The final element composing the store is actions. They are different from mutations, because
they don't modify the state directly, but they can both commit mutations and make
asynchronous operations. Similar to the mutations, actions are declared with a type and a
handler. The handler can't be called directly, you need to dispatch an action type like this:

store.dispatch('action-type', payloadObject)
An action handler takes two arguments:

e context, which provides the commit, dispatch, state, and getters utilities
linked to the store

¢ payload, which is the argument provided to the dispatch call

1. Let's add our first actions, of type 'login' and 'logout', which don't expect a
payload:

const store = new Vuex.Store ({
VA
actions: {
login ({ commit })
const userData =
profile: {
displayName: 'Mr Cat',
}I

{
{

[247]

Project 4 - Geolocated Blog Chapter 6

}

commit ('user', userData)
ry

logout ({ commit }) {
commit ('user', null)

by
}
})

2. In the AppMenu component, we can test them by replacing the code of the
methods corresponding to the two buttons:

methods: {
centerOnUser () |
// TODO
// Testing login action
this.$store.dispatch('login')

ty
logout () {
this.$store.dispatch('logout')

by
by

Now, if you click on the buttons in the menu, you should see the user profile appear and
disappear.

Similarly to getters, you should always use actions instead of mutations
inside your components. There is a good chance that the features of your
app will evolve, so it's a good idea to be able to change the action code
rather than the component code (for example, if you need to call a new
additional mutation). Look at actions as abstraction for your general
application logic.

Mapping helpers
Vuex provides a few helper functions to add state, getters, mutations, and actions. Since we

should only use getters and actions in our components to help separate the state and related
logic from the components, we will only use mapGetters and mapActions.

[248]

Project 4 - Geolocated Blog Chapter 6

These functions generate appropriate computed properties and methods to the components
that rely on the corresponding getters and actions from the store, so you don't have to type
this.$store.getters and this.$store.dispatch each time. The argument is either:

e An array of types that are mapped with the same name as? the component
¢ An object, whose keys are the aliases on the component and the value are the
types

For example, the following code using the array syntax:
mapGetters(['a', 'b'])
Is equivalent to this in the component:
{
a () { return this.$store.getters.a },
b () { return this.$store.getters.b },
}
And the following code using the object syntax:
mapGetters ({ x: 'a', y: 'b' })
Is equivalent to this:
x () { return this.$store.getters.a },
y () { return this.$store.getters.b },
Let's refactor our AppMenu component to use those helpers:

1. First import those in the component:

import { mapGetters, mapActions } from 'wvuex'

[249]

Project 4 - Geolocated Blog Chapter 6

2. Then, we can rewrite the component like this:

export default {
computed: mapGetters ([
'user',
'userPicture’,
1)
methods: mapActions ({
centerOnUser: 'login',
logout: 'logout',
)y
}

Now, the component will have two computed properties that return the corresponding
store getters, and two methods that dispatch the '1ogin' and 'logout' action types.

User state

In this section, we will add the user system to allow users to log in with their Google
account.

Setting up Google OAuth

Before we can use the Google API, we have to configure a new project in the Google
Developers Console:

1. Go to the Developer Console at console.developers.google.com.

2. Create a new project using the Projects drop-down at the top of the page and give
it a name. When project creation is finished, select it.

3. To retrieve the user profile, we need to enable the Google+ API. Go to APIs &
services | Library and click on Google+ API under the Social APIs section. On
the Google+ API page, click on the Enable button. You should then see a usage
dashboard with some empty graphs.

4. Next we need to create application credentials to authenticate our server to
Google. Go to APIs & services | Credentials and select the OAuth consent
screen tab. Make sure you select an email address and enter a Product name shown
to users.

[250]

https://accounts.google.com/ServiceLogin/signinchooser?service=cloudconsole&passive=1209600&osid=1&continue=https%3A%2F%2Fconsole.developers.google.com%2F%3Fref%3Dhttps%3A%2F%2Fcdp.packtpub.com%2Fvue_js_2_project_guide%2Fwp-admin%2Fpost.php%3Fpost%253D366%2526post_type%253Dchapter%2526action%253Dedit&followup=https%3A%2F%2Fconsole.developers.google.com%2F%3Fref%3Dhttps%3A%2F%2Fcdp.packtpub.com%2Fvue_js_2_project_guide%2Fwp-admin%2Fpost.php%3Fpost%253D366%2526post_type%253Dchapter%2526action%253Dedit&flowName=GlifWebSignIn&flowEntry=ServiceLogin

Project 4 - Geolocated Blog Chapter 6

5. Select the Credentials tab, click on the Create credentials drop-down, and then

select OAuth client ID. Select Web application as the application type, then enter
the URL where the server will be up in the Authorized JavaScript origins field.
For now, it will be http://localhost :3000. Press the Enter key to add it to the
list. Then add the URL to which Google will redirect the user after the Google
login screen into the Authorized redirect URIs--
http://localhost:3000/auth/google/callback and press the Enter key.
This URL corresponds to a special route on the server. When you are done, click
on the Create client ID button.

API

EE

<l

APls & services Credentials
pashbord Add credentials to your project
Library

@ Find out what kind of credentials you need
Credentials Calling Google+ API from a web browser

2 Createan QAuth 2.0 client ID
Name

Web client 1

Restrictions
Enter JavaScript origins, redirect URIs, or both

Authorized JavaScript origins

For use with requests from a browser. This is the origin URI of the client application.
It can't contain a wildcard (http://*.example.com) or a path (http://example.com
/subdir). If you're using a nonstandard port, you must include it in the crigin URL

http://localhost:3000

Authorized redirect URIs

For use with requests from a web server. This is the path in your application that
users are redirected to after they have authenticated with Google. The path will be
appended with the authorization code for access. Must have a protocol. Cannot
contain URL fragments or relative paths. Cannot be a public IP address.

http://localhost:3000/auth/google/callback

Create client ID

[251]

Project 4 - Geolocated Blog Chapter 6

6. Then copy or download the credentials containing the client ID and a secret that
you shouldn't share with anybody outside of your team. These two keys will
allow the Google API to authenticate your application and will display its name
when the users log in through the Google login page.

7. Download the API server of the project (https://github.com/Akryum/packt-
vue-project—guide/tree/master/chapter6-full/server), and extract it outside
of the vue app directory. Open a new Terminal inside this new folder, and install
server dependencies with the usual command:

npm install

8. Next, you need to export the two GOOGLE_CLIENT_ID and
GOOGLE_CLIENT_SECRET environment variables with the corresponding values
in the credentials file you downloaded from the Google Developers Console. For
example, on Linux:

export GOOGLE_CLIENT_ID=xxx
export GOOGLE_CLIENT_SECRET=xxx

Or on Windows:

set GOOGLE_CLIENT_ID=xxx
set GOOGLE_CLIENT_SECRET=xxx

You need to do that each time you want to start the server in a new
Terminal session.

9. You can start the server with the start script:

npm run start

Login button

The Login component contains the button that should open a popup displaying the Google
login page. The popup will first load a route on the Node.js server, which will redirect to
the Google OAuth page. When the user is logged in and has authorized our app, the popup
is redirected to our nodejs server again and will send a message to the main page before
closing:

[252]

https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter6-full/server

Project 4 - Geolocated Blog Chapter 6

1. Edit the openGoogleSignin method to open the popup to the /auth/google
route on the server that will redirect the user to Google:

openGoogleSignin () {
const url = 'http://localhost:3000/auth/google’
const name = 'google_login'
const specs = 'width=500,height=500"

window.open (url, name, specs)
b

After the user is successfully authenticated via Google, the callback page on the
server will send a message to the Vue app window using the standard
postMessage API.

When we receive the message, we need to check that it comes from the right
domain (localhost : 3000 for our server).

2. Create a new handleMessage method with a destructured message parameter:

handleMessage ({data, origin}) {

if (origin !== 'http://localhost:3000") {
return

}

if (data === 'success') {

this.login()
}
¥

3. We will dispatch the '1ogin' action type to the store, which will fetch the user
data soon. Map it to the component:

import { mapActions } from 'vuex'

export default {
methods: {
.. .mapActions ([
'login',

1)y

//
by

[253]

Project 4 - Geolocated Blog Chapter 6

4. Then we use the mounted lifecycle hook (outside of the methods) to add an event
listener to the window:

mounted () {

window.addEventListener ('message', this.handleMessage)
ry

5. And finally, we don't forget to remove this listener when the component is being
destroyed:

beforeDestroy () {

window.removeEventListener ('message', this.handleMessage)
ry

User in the store

The store will have two actions related to the user--1ogin and logout. We already have
them, we now need to implement what they will do. We will also add some user-related

features in this section, such as loading the user session when the app starts and displaying
its profile picture in the top bar:

1. Let's implement the 1ogin action in the store. It will fetch user data, just like we
did in chapter 5, Project 3 - Support Center, and then commit the data to the state
(don't forget to import '$fetch’):

async login ({ commit }) {

try {
const user = await $fetch('user')
commit ('user', user)

if (user) {
// Redirect to the wanted route if any or else to home
router.replace (router.currentRoute.params.wantedRoute | |
{ name: 'home' })
}
} catch (e) {
console.warn (e)
}
}!

[254]

Project 4 - Geolocated Blog Chapter 6

As you can see, an action can perform asynchronous operations, for example here
requesting data to the server. If the user is connected, we redirect them to the page
they wanted or the home page, like we did in chapter 5, Project 3 - Support Center.

2. The 'logout' action needs to send the /logout request to the server and
redirect the user back to the login screen if the current route is private:

logout ({ commit }) {
commit ('user', null)

$fetch ('logout')

// If the route is private
// We go to the login screen
if (router.currentRoute.matched.some (r => r.meta.private)) {
router.replace ({ name: 'login', params: {
wantedRoute: router.currentRoute.fullPath,
P
}
}I

According to the information we have put in the router. js file, if the user was on the
'home' route, it will be redirected to the login page.

Adapting the router

We now have to restore the navigation guards to the router like in chapter 5, Project 3 -
Support Center--that way, the user won't be able to enter the private route if they are not
connected:

In the router. js file, restore the be foreEach navigation guard by using the user store
getter to check whether the user is connected or not. It should be quite similar to the one we
have already implemented:

import store from './store'
router.beforeEach ((to, from, next) => {
console.log('to', to.name)
const user = store.getters.user
if (to.matched.some(r => r.meta.private) && !user) {
next ({
name: 'login',

params: {
wantedRoute: to.fullPath,
I

[255]

Project 4 - Geolocated Blog Chapter 6

H)

return

}

if (to.matched.some(r => r.meta.guest) && user) {
next ({ name: 'home' })
return

}

next ()

H)

Adapting the fetch plugin
The $fetch plugin needs some changes as well, since we need to log the user out if their
session has expired:

1. In this case, we just need to dispatch the ' logout ' action:

} else if (response.status === 403) {
// If the session is no longer valid
// We logout
store.dispatch('logout')

} else {

2. Don't forget to import the store:
import store from '../store'

You can now try logging in through Google to your app!

Check the user session on start

When the application starts, we want to check whether the user has an active session like
we did in chapter 5, Project 3 - Support Center:

1. For that, we will create a new generic 'init' action in the store; this will
dispatch the 'login' action, but could eventually dispatch more actions:

actions: {
async init ({ dispatch }) {
await dispatch('login')
b

/7
b

[256]

Project 4 - Geolocated Blog Chapter 6

2. Inthemain. js file, we can now dispatch and wait for this action:

async function main () {
await store.dispatch('init')

new Vue ({
.. .App,
el: '#app',
router,
store,
})
}

main ()

Now you can log in through Google and refresh the page without being brought back to the
login page.

The profile picture

Finally, we can implement the userPicture getter to return the first value contained in the
photos array of the Google profile:

userPicture: (state, getters) => {
const user = getters.user
if (user) {
const photos = user.profile.photos
if (photos.length !== 0) {
return photos[0].value
}
}
}!

As you can see, we can reuse existing getters inside other getters with the second argument!

You should now have the complete toolbar displayed in the app when you are connected:

9 GeoBlog = Guillaume CHAU

[257]

Project 4 - Geolocated Blog Chapter 6

Synchronizing the store and the router

We can integrate the router into the store with the official vuex-router-sync package. It
will expose the current route in the state (state. route) and will commit a mutation each
time the route changes:

1. Install it with the usual command:
npm i -S vuex-router-sync

2. To use it, we need the sync method in the main main. js file:
import { sync } from 'vuex-router-sync'
sync (store, router)

Now, you can access the state.route object and time-travel debugging will apply to the
router as well.

Embedding Google Maps

In this second part, we are going to add a map to the home page and control it through the
Vuex store.

Installation
To integrate Google Maps, we will need an API and a third-party package called vue-

googlemaps.

Getting the API key

To use Google Maps in our app, we need to enable the corresponding API and generate an
API key:

1. In the Google Developers Console, go back to the APIs & services | Library and
click on Google Maps JavaScript API under the Google Maps APIs section. On
the API page, click on the Enable button.

2. Then go to Credentials and create a new API key.

[258]

Project 4 - Geolocated Blog Chapter 6

Installing the library

We will now install the vue-googlemaps library, which will help us integrate Google Maps
into our app.

1. In the app, install the vue-googlemaps package with the following command:
npm i -S vue—googlemaps

2. In the main main. js file, you can enable it in the app with the API key from
Google:

import VueGoogleMaps from 'vue-googlemaps'

Vue.use (VueGoogleMaps, {

load: {
apiKey: 'your_api_key_here',
libraries: ['places'],

o
})

We also specify we want to load the Google Maps Places library, useful for
showing info on a location.

We now have access to the components of the library!
3. In the App.vue component, add the style of the library:

<style lang="stylus">

@import '~vue-googlemaps/dist/vue-googlemaps.css'
@import '../styles/main'
</style>

We use the ~ character because Stylus doesn't support absolute paths.

Here we want to access a npm module, so we add this to tell the stylus-
loader that this is an absolute path.

[259]

Project 4 - Geolocated Blog Chapter 6

Adding a map

The map will be the main component of the app, and it will contain:

¢ The user position indicator
¢ A marker for each post
¢ The eventual "ghost" marker for the post being created

We will now set up a simple map that will fill the main page:

1. Create a new BlogMap .vue component with the center and zoom properties:

<template>
<div class="blog-map">
<googlemaps—map
:center="center"
:zoom="zoom"
:options="mapOptions"
@update:center="setCenter"
@update:zoom="setZoom"
/>
</div>
</template>

<script>
export default {
data () {
return {
center: {
lat: 48.8538302,
lng: 2.2982161,
}I
zoom: 15,
}
}I

computed: {
mapOptions () {
return {
fullscreenControl: false,
}
}I
}I

methods: {
setCenter (value) {

[260]

Project 4 - Geolocated Blog Chapter 6

this.center = value

}I
setZoom (value) {
this.zoom = value
}I
}I
}
</script>

2. Then, you need to add it to the GeoBlog. vue component:

<template>
<div class="geo-blog">
<AppMenu />
<div class="panes">
<BlogMap />
<!-— Content here —-—>
</div>
</div>
</template>

Don't forget to import it and to put it in the component s option!

Connecting the BlogMap and the store

Right now the state related to the map is local to the BlogMap component--let's move it to
the store!

Vuex modules

In the Vuex store, we can divide our state in modules, to have better organization. A
module contains a state, getters, mutations, and actions, just like the main store. The store
and each module can contain any number of modules, so the store can have nested modules
inside other modules—-it's up to you to find the structure that works best for your project.

In this application, we will create two modules:

¢ maps related to the map
® posts related to the blog posts and comments

[261]

Project 4 - Geolocated Blog Chapter 6

For now, we will focus on the maps module. It's best to at least separate each module in a
different file or directory:

1. Create a new maps. js file in the store folder that exports as default a module
definition and the state of the map:

export default {
namespaced: true,

state () {
return <
center: {
lat: 48.8538302,
lng: 2.2982161,
}I

zoom: 15,
}
}I
}

2. Then to add the module to the store, put it in a new modules option in the
store/index. s file:

import maps from './maps'

const store = new Vuex.Store ({
//
modules: {
maps,
}!
})

By default, the state in the getters, mutations, and actions of the module will be the state of
this module. Here it will be store.state.maps.

Namespaced module

The namespaced option tells Vuex to also add the 'maps/' namespace before all the getter,
mutation, and action types of the module. It will also add them to the commit and
dispatch calls inside the namespaced module.

[262]

Project 4 - Geolocated Blog Chapter 6

Let's add a few getters that will be used by the BlogMap component:

getters: {
center: state => state.center,
zoom: state => state.zoom,

I

The maps/center and the maps/zoom getters will be added to the store. To read them, you
could do:

this.$store.getters['maps/center']

With the getter helper:

mapGetters ({
center: 'maps/center',
zoom: 'maps/zoom',

})

You can also specify a namespace parameter:

. .mapGetters ('maps', [
'center',
'zoom',
1),
. .mapGetters ('some/nested/module’', |
//
1),

The last way to do it is to generate helpers based on a specific namespace with the
createNamespacedHelpers method:

import { createNamespacedHelpers } from vuex
const { mapGetters } = createNamespacedHelpers ('maps')

export default {
computed: mapGetters ([
'center',
'zoom',

1)y

[263]

Project 4 - Geolocated Blog Chapter 6

Accessing global elements

In the namespaced module getters, you can access the root state and root getters (which
means any getter) like this:

someGetter: (state, getters, rootState, rootGetters) => { /* ... */ }

In the actions, you have access to rootGetters in the context and you can use the { root:
true } option for the commit and dispatch calls:

myAction ({ dispatch, commit, getters, rootGetters }) {
getters.a // store.getters|'maps/a']
rootGetters.a // store.getters['a']

commit ('someMutation') // 'maps/someMutation'
commit ('someMutation', null, { root: true }) // 'someMutation'
dispatch ('someAction') // 'maps/someAction'

dispatch ('someAction', null, { root: true }) // 'someAction'

BlogMap module and component

In this section, we are going to wire the BlogMap component to the maps namespaced
module.

Mutations

Let's add the center and zoom mutations in the maps module:

mutations: {
center (state, value) {
state.center = value
}I
zoom (state, wvalue) {
state.zoom = value
}I
}I

[264]

Project 4 - Geolocated Blog Chapter 6

Actions

Then, we set up the actions that commit those mutations:

actions: {
setCenter ({ commit }, value) {
commit ('center', value)

by

setZoom ({ commit }, wvalue) {
commit ('zoom', value)

by
by

Mapping in the component

Back to our BlogMap component; we can use the helpers to map the getters and the actions:

import { createNamespacedHelpers } from 'vuex'

const {
mapGetters,
mapActions,
} = createNamespacedHelpers ('maps')

export default {
computed: {
.. .mapGetters ([
'center',
'zoom',

1),

mapOptions () A
//
}I
}I

methods: mapActions ([
'setCenter’,
'setZoom',
1)
t

Now the state of the map is managed in the Vuex store!

[265]

Project 4 - Geolocated Blog Chapter 6

User position

Now, we will add the user position indicator, which will give us the position so we can
store it in the store:

1. Add the googlemaps-user-position component inside the map:

<googlemaps-map

>
<!-- User Position -->

<googlemaps—-user—position
Qupdate:position="setUserPosition"
/>
</googlemaps-map>

2. Now we need to add this userPosition info in the maps module:

state () {
return {
//

userPosition: null,

}
}I
getters: {
//
userPosition:
}I
mutations: {

//
userPosition (state, value) {

state.userPosition = value

by

state => state.userPosition,

Fy
actions: {

//
setUserPosition ({ commit },
commit ('userPosition', wvalue)
}I
}

3. And then map the setUserPosition action in the BlogMap component using

value) |

the appropriate helper.

[266]

Project 4 - Geolocated Blog Chapter 6

Now we should have the user position committed in the store (assuming you have given
the browser the permission to access your position).

Centering on the user

This user position will be very useful to center the map on the user:
1. Let's create a new centerOnUser action in the maps module:

async centerOnUser ({ dispatch, getters }) {
const position = getters.userPosition
if (position) {
dispatch('setCenter', position)
}
by

With this, we can also change the setUserPosition action--if it's the first time
we get the user position (which means it's null in the state), we should center the
map on the user.

2. The setUserPosition action should now look like this:

setUserPosition ({ dispatch, commit, getters }, value) {
const position = getters.userPosition
commit ('userPosition', wvalue)
// Initial center on user position
if (!position) {
dispatch ('centerOnUser')
}
}!

You can try it now, and have the map centered on you with a little blue dot.

By default, the user indicator is disabled if the accuracy of your position is
more than 1,000 meters, so it's possible that this won't work depending on
your hardware. You can use a higher value with the minmumAccuracy
prop of the googlemaps-user-position component.

3. Wealsohave a 'center on user' button in the toolbar, so we need to replace
the centerOnUser action mapping in the AppMenu component:

methods: mapActions ({
logout: 'logout',
centerOnUser: 'maps/centerOnUser',

I

[267]

Project 4 - Geolocated Blog Chapter 6

Blog posts and comments

In this last part, we are going to add the blog content to the app. Each blog post will have a
position and an optional place ID from Google Maps (so the place can be described, for
example, as "Restaurant A"). We will load the posts that fit in the visible bounds of the map
and each one will appear as a marker with a custom icon. When clicking on a marker, the
right side panel will display the post content and a list of comments. Clicking anywhere else
on the map will create a draft post at this location in the Vuex store and display a form to
write its content and save it in the right side panel.

Posts store module

Let's start by creating a new posts namespaced Vuex module to manage shared data
related to the blog posts:

1. Create anew store/posts. js file with those state properties:

export default {
namespaced: true,

state () {
return

// New post being created
draft: null,
// Bounds of the last fetching
// To prevent refetching
mapBounds: null,
// Posts fetched in those map bounds
posts: [],
// ID of the selected post
selectedPostId: null,

b

[268]

Project 4 - Geolocated Blog Chapter 6

2. Next we need a few getters:

getters: {
draft: state => state.draft,
posts: state => state.posts,
// The id field on posts is '_id' (MongoDB style)
selectedPost: state => state.posts.find(p => p._id ===
state.selectedPostId),
// The draft has more priority than the selected post
currentPost: (state, getters) => state.draft ||
getters.selectedPost,

}!

3. And some mutations (note that we mutate posts and mapBounds together so
they stay consistent):

mutations: {
addPost (state, value) {
state.posts.push (value)

}I

draft (state, value) {
state.draft = value

}I

posts (state, { posts, mapBounds }) {
state.posts = posts
state.mapBounds = mapBounds

}I

selectedPostId (state, value) {
state.selectedPostId = value

}I

updateDraft (state, value) {
Object.assign(state.draft, value)
b
b

[269]

Project 4 - Geolocated Blog Chapter 6

4. Finally, add it to the store like we did for the maps module:
import posts from './posts'

const store = new Vuex.Store ({
/..
modules: {
maps,
posts,
o
)

Rendering functions and JSX

In chapter 4, Advanced Project Setup, I already wrote about render functions and JSX, which
are different ways other than templates to write the view of the components. Before
continuing, we will go into more detail about those and then we will put them into practice.

Writing the view in JavaScript with render functions

Vue compiles our templates into render functions. This means that all the component
views are JavaScript code in the end. Those render functions will compose the Virtual DOM
tree of elements to be displayed in the page real DOM.

Most of the time, templates are fine, but you may come across cases where you need the full
programmatic power of JavaScript to create a component view. Instead of specifying a
template, you write a render function to your component. For example:

export default {
props: ['message'],
render (createElement) {
return createElement (

// Element or Component
'p'y,
// Data Object
{ class: 'content' },
// Children or Text content
this.message

by

[270]

Project 4 - Geolocated Blog Chapter 6

The first argument is createElement, the function you need to call to create elements
(which can be either DOM elements or Vue components). It takes up to three arguments:

e element (required), which can be the name of an HTML tag, the ID of a
registered component, or directly a component definition object. It can be a
function returning one of these.

e data (optional) is the Data Object, which specifies things such as CSS classes,
props, events, and so on.

e children (optional) is either a text string or an array of children constructed
with createElement.

We will use h as an alias of createElement, the argument of the render
function, since it's the common name used by everyone (and it's required
by JSX as we will see in a bit). h comes from the hyperscript term
describing "writing HTML using JavaScript".

The first example would be equivalent to this template:

<template>
<p class="content">{{ message }}</p>
</template>

Dynamic templates

The main advantages of writing render functions directly are that they are closer to
compiler and you have the full power of JavaScript available to manipulate the template.
The obvious drawback is that it doesn't look like HTML anymore, but this can be alleviated
by JSX as we will see in the What is [SX section.

For example, you could create a component that renders a title at any level we want:

Vue.component ('my-title', {

props: ['level'],
render (h) {
return h(

// Tag name
"hS${this.level}",

// Default slot content
this.S$slots.default,

[271]

Project 4 - Geolocated Blog

Chapter 6

Here we skipped the data object argument since it is optional. We only

passed the tag name and the content.

And then, for example, we would use it in our template to render an <h2> title element:

<my-title level="2">Hello</my-title>

The equivalent in template would be quite tedious to write:

<template>
<hl v-if="level
<slot></slot>
</h1>

<h2 v-else-if="level

<slot></slot>
</h2>

<h3 v-else-if="level

<slot></slot>
</h3>

<h4 v-else-if="level

<slot></slot>
</hé>

<h5 v-else-if="level

<slot></slot>
</h5>

<h6 v-else-if="level

<slot></slot>
</h6>
</template>

Data objects

1>

2">

3">

4">

5">

6">

The second optional argument is the data object, which allows you to pass additional
information about the element to createElement (or h). For example, you can specify CSS
classes in the same way we use the v-bind:class directive in our classic templates, or we

can add event listeners.

[272]

Project 4 - Geolocated Blog

Chapter 6

Here is an example of a data object that covers most features:

{

// Same API as “v-bind:class’
'elass': {
foo: true,
bar: false
}I
// Same API as “v-bind:style’
style: {
color: 'red',
fontSize: 'ldpx'
}I
// Normal HTML attributes
attrs: {
id: 'foo'
}I
// Component props
props: {
myProp: 'bar'
}I
// DOM properties
domProps: {
innerHTML: 'baz'
}I
// Event handlers are nested under "on", though
// modifiers such as in v-on:keyup.enter are not
// supported. You'll have to manually check the
// keyCode in the handler instead.
on: {
click: this.clickHandler
}I
// For components only. Allows you to listen to
// native events, rather than events emitted from
// the component using vm.S$emit.
nativeOn: {
click: this.nativeClickHandler
}I
// Custom directives. Note that the binding's
// oldValue cannot be set, as Vue keeps track
// of it for you.

directives: [
{
name: 'my-custom-directive',
value: '2'
expression: '1 + 1°',
arg: 'foo',

modifiers: {

[273]

Project 4 - Geolocated Blog Chapter 6

bar: true

}

I
// The name of the slot, if this component is the

// child of another component
slot: 'name-of-slot'
// Other special top-level properties
key: 'myKey',
ref: 'myRef'
}

For example, we can apply a special CSS class if the title level is below a specific number:

Vue.component ('my-title', {

props: ['level'],
render (h) A
return h(

// Tag name
"h${this.level}",
// Data object
{
'class': {
'important-title': this.level <= 3,
}7

I
// Default slot content

this.$slots.default,

}
1)

We could also put a click event listener that calls a method of the component:

Vue.component ('my-title', {

props: ['level'],
render (h) {
return h(

// Tag name
“h${this.level}",
// Data object
{
on: {
click: this.clickHandler,
}I

ry
// Default slot content

this.$slots.default,

[274]

Project 4 - Geolocated Blog Chapter 6

)

}I

methods: {
clickHandler (event) {

console.log('You clicked"')

}I

}I

)

You can find the full description of this object in the official documentation (https://
vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth).

As we have seen, Vue uses render functions in pure JavaScript under-the-hood of our
templates! We can even write our own render functions, using the createElement (or h)
function to construct the elements to be added to the Virtual-DOM.

This way of writing our views is more flexible and powerful than templates, but is more
complex and verbose. Use it when you feel comfortable with it!

Virtual DOM

The result of the render function is a tree of nodes created with the createElement (or h)
function; these are called VNodes in Vue. It represent the view of the component in the
Virtual DOM held by Vue. Every element in the DOM is a node--HTML elements, text, even
comments are nodes:

Some text
content

#comment

[275]

https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth
https://vuejs.org/v2/guide/render-function.html#The-Data-Object-In-Depth

Project 4 - Geolocated Blog Chapter 6

Vue doesn't directly replace the Real DOM tree with the new Virtual DOM tree, because it
may engender a lot of DOM operations (add or remove nodes), which are costly. To be
more performant, Vue will create a diff between the two trees, and it will only do the DOM
operations necessary to update the Real DOM to match the Virtual DOM.

All of this happens automatically so that Vue keeps the Real DOM up-to-date when data
changes in your application.

What is JSX?

JSXis a language created to write code that looks more like HTML inside the render
function's JavaScript code. It is effectively an XML-like extension to JavaScript. Our first
previous example looks like this in JSX:

export default {
props: ['message'],
render (h) {
return <p class="content">
{this.message}
</p>
}I
}

This is possible thanks to Babel, the library that is in charge of compiling our ES2015
JavaScript (or more recent) code into old ES5 JavaScript, which runs in older browsers such
as Internet Explorer. Babel can also be used to implement new features into the JavaScript
language (such as the proposed draft features that may appear in later versions) or entirely
new extensions such as JSX.

The babel-plugin-transform-vue-jsx included in babel-preset-vue takes care of
transforming the JSX code into real JavaScript code that uses the h function. So the previous
JSX example will be transformed back into:

export default {

props: ['message'],
render (h) {
return h('p', { class: 'content' }, this.message)

by
}

[276]

Project 4 - Geolocated Blog Chapter 6

That's why we need to use h instead of createElement when using JSX.

Thankfully, vue-cli already has this enabled, so we can write JSX code in our . vue files!

Blog content structure (in JSX!)

Let's create a new src/components/content folder and a new BlogContent . vue file
inside it. This component represents the right side panel and will be responsible for
displaying the right component:

® A LocationInfo.vue component that may display the location adress and
name if selected on the map
¢ Below, it will display one of the following:
e A NoContent.vue component if no location is selected, with a
click on the map hint
e A CreatePost.vue component if there is a draft post, with a form
e A PostContent.vue component if a real post is selected, with the
content and the comments list

1. Let's create those components as well in the content directory, with an empty
template:

<template></template>

Back to our BlogContent .vue component! We will write this new component in
JSX to practice it.

2. Start by creating the namespaced helpers:

<script>
import { createNamespacedHelpers } from 'vuex'

// posts module

const {
mapGetters: postsGetters,
mapActions: postsActions,

} = createNamespacedHelpers ('posts"')

</script>

[277]

Project 4 - Geolocated Blog Chapter 6

It is good practice to rename the namespaced helpers because you may
add helpers for another module in the future. For example, if you don't,
you may end up with two mapGetters, which is impossible. Here we
rename mapGetters to postsGetters and mapActions to
postsActions.

3. Then let's write the component definition:

export default {
computed: {
.. .postsGetters ([
'draft’',
'currentPost',

1)y

cssClass () A
return [
'blog-content',
{
'has-content': this.currentPost,
}!
]
}!
}!
}

The has-content CSS class will be used on a smartphone to hide the pane when
no post is selected or no draft is being edited (it will be full screen).

4. Next, we need to write the render function with JSX:
render (h) {

let Content
if (!this.currentPost) {

Content = NoContent

} else if (this.draft) {
Content = CreatePost

} else {

Content = PostContent

}

return <div class={this.cssClass}>
<LocationInfo />
<Content />

</div>

by

[278]

Project 4 - Geolocated Blog Chapter 6

Don't forget to import the four other components as well!

In JSX, the case of the first letter of a tag is important! If it starts with a lowercase
letter, it will be considered as a string parameter for the createElement function
and will resolve either to an HTML element or a registered component (for
example, <div>). On the other hand, if the first letter is uppercase, it will be
considered as a variable! In our preceding code, LocationInfo is directly used
from the import. For example:

import LocationInfo from './LocationInfo.vue'

export default {
render (h) {
return <LocationInfo />
}
}

We also use this to dynamically choose which component will be displayed,
thanks to the Component local variable (note the uppercase C). It wouldn't work if
the first letter of the variable name was lowercase.

5. Let's rewrite our GeoBlog. vue component in JSX as well while adding the
BlogContent component:

<script>

import AppMenu from './AppMenu.vue'

import BlogMap from './BlogMap.vue'

import BlogContent from './content/BlogContent.vue'

export default {
render (h) {
return <div class="geo-blog">
<AppMenu />
<div class="panes">
<BlogMap />
<BlogContent />
</div>
</div>
}
}
</script>

[279]

Project 4 - Geolocated Blog Chapter 6

Don't forget to remove the <template> part in the file! You can't have
both a render function and a template.

No content

Before continuing, let's quickly add the template of the NoContent . vue component, which
just displays a hint when no post is selected:

<template>
<div class="no-content">
<i class="material-icons">explore</i>
<div class="hint">Click on the map to add a post</div>
</div>
</template>

Creating a post

When the user clicks on a location on the map with no marker, we create a draft post; then
the form in the right side panel will edit its content. When the user clicks the Create button,
we send the draft to the server and add the result (the new post data) to the posts list.

Draft store actions

In the posts namespaced store module, we will need a few new actions to create, update,
and clear the draft post:

Add the clearDraft, createDraft, setDraftLocation, and updateDraft actions:

actions: {
clearDraft ({ commit }) {
commit ('draft', null)
}!
createDraft ({ commit }) {
// Default values
commit ('draft', |
title: '',
content: '"',
position: null,
placeId: null,

})

[280]

Project 4 - Geolocated Blog Chapter 6

iy

setDraftLocation ({ dispatch, getters }, { position, placeId }) {
if (!getters.draft) {
dispatch('createDraft')
}
dispatch ('updateDraft', {
position,
placeld,
})
}I

updateDraft ({ dispatch, commit, getters }, draft) {
commit ('updateDraft', draft)
}I
}I

The action we call when the user clicks the map is setDraftLocation, which will
automatically create a new draft, if there isn't one, and update its location.

Blog Map changes

We need to make some changes to the BlogMap component to integrate our Vuex store.

1. In the BlogMap.vue component, we can add the Vuex helpers for the posts
namespaced module, while renaming the ones we already have for the maps
module:

// Vuex mappers

// maps module

const {
mapGetters: mapsGetters,
mapActions: mapsActions,

} = createNamespacedHelpers ('maps')

// posts module

const {
mapGetters: postsGetters,
mapActions: postsActions,

} = createNamespacedHelpers ('posts')

2. Add the draft getter:

computed: {
.. .mapsGetters ([
'center',

[281]

Project 4 - Geolocated Blog Chapter 6

'zoom',
1)

.. .postsGetters ([
'draft’,

3. Add the setDraftLocation action as well:

methods: {

.. .mapsActions ([
'setCenter',
'setUserPosition’,
'setZoom',

1),

.. .postsActions ([

'setDraftLocation',
1)y
}l

Click handler
We also need to handle the clicks on the map to create a new blog post.

1. Add the click handler to the map:

<googlemaps—-map
:center="center"
:zoom="zoom"
:options="mapOptions"
@Qupdate:center="setCenter"
@update:zoom="setZoom"

@click="onMapClick"
>

2. Add the corresponding method that dispatches the setDraftLocation action
with the eventual 1atLng (the position) and placeId from Google Maps:

onMapClick (event) {
this.setDraftLocation ({
position: event.latlLng,

placeId: event.placeld,
})
o

[282]

Project 4 - Geolocated Blog Chapter 6

You can now try to click on the map--two mutations (one to create the draft and one to
update its location) should be recorded in the dev tools.

Base State 17:52:31
maps/center 17:53:87
maps/userPosition 17:53:87
posts/draft 17:53:88

posts/updateDraft

Ghost marker

We would like to display a transparent marker on the position of the draft. The component
to use is googlemaps—-marker:

Add a new marker in the googlemaps-map component that uses the info from the draft
getter:

<!-- New post marker -->
<googlemaps—-marker
v-if="draft"
:clickable="false"
:label="{
color: 'white',
fontFamily: 'Material Icons',
text: 'add_circle’',
}"
ropacity=".75"
:position="draft.position"
:z—index="6"

/>

If you don't see the new marker, refresh the page.

[283]

Project 4 - Geolocated Blog Chapter 6

Try clicking on the map to see the ghost marker in action:

=
1:)

Ll
St
)
o
A
e
W

Post form

Onward to the CreatePost . vue component! This component will display a form to enter
the details of the new post like its title and content.

1. Let's first create its template with a simple form:

<template>
<form
class="create-post"
@submit.prevent="handleSubmit">
<input
name="title"
v-model="title"
placeholder="Title"
required />

<textarea
name="content"
v-model="content"
placeholder="Content"
required />

<div class="actions">

<button
type="button"
class="secondary"
@click="clearDraft">
<i class="material-icons">delete</i>
Discard

</button>

<button
type="submit"
:disabled="!formvalid">
<i class="material-icons">save</i>
Post

</button>

[284]

Project 4 - Geolocated Blog Chapter 6

</div>
</form>
</template>

2. Then map the Vuex helpers from the posts module:

<script>
import { createNamespacedHelpers } from 'vuex'

// posts module
const {
mapGetters: postsGetters,
mapActions: postsActions,
} = createNamespacedHelpers ('posts')
</script>

3. Add the necessary getters and methods:

export default {
computed: {
...postsGetters ([
'draft’,
1)
}I
methods: {
...postsActions ([
'clearDraft’',
'createPost', // We will create this one very soon
'updateDraft’',
1)
}I
}

4. Then we will add a few computed properties bound to the form input elements
with the v—-model directive:

title: {
get () {
return this.draft.title
}I
set (value) {
this.updateDraft ({
...this.draft,
title: value,
)
}I
}I

[285]

Project 4 - Geolocated Blog Chapter 6

content: {

get () A
return this.draft.content

}I
set (value) {
this.updateDraft ({
...this.draft,
content: wvalue,
)
}I
}I

formvalid () {
return this.title && this.content

by

As you can see, we can use computed properties in two ways with this object
notation: with a getter and with a setter! That way, we can use them to read a
value, but also to easily change it:

e get () is called like before when the computed property is first read or if it needs
to be recomputed

e set (value) is called when the property is assigned a value, for example this.a
= 'new value'

This is very useful when working with Vuex and forms, because it allow us to use
a Vuex getter for the get part, and a Vuex action for the set part!

5. We also need a handlesSubmit method that dispatches the createPost action
that we will create very soon:

handleSubmit () {
if (this.formvValid) {
this.createPost (this.draft)
}
}I

[286]

Project 4 - Geolocated Blog Chapter 6

Making the request

We will now implement an action to send a new Geolocated Blog post to the server.

1. Let's create the new createPost action in the posts Vuex module(don't forget
to import '$fetch’)):

async createPost ({ commit, dispatch }, draft) {
const data = {
...draft,
// We need to get the object form
position: draft.position.toJdSON(),

}

// Request

const result = await S$fetch('posts/new', {
method: 'POST',
body: JSON.stringify (data),

H)
dispatch('clearDraft')

// Update the posts list

commit ('addPost', result)

dispatch('selectPost', result._id)
}l

This is our most complex action yet! It prepares the data (notice how we serialize
the Google Maps position object to a JSON-compatible plain object). Then we
send a POST request to the /posts/new path on our server, and retrieve the
result, which is the new real post object (with its _id field set). Finally, the draft is
cleared, and the new post is added to the store and selected.

2. We also need a new selectPost action so the new post will be automatically
selected:

async selectPost ({ commit }, id) {
commit ('selectedPostId', id)
// TOTO fetch the post details (comments, etc.)

by

[287]

Project 4 - Geolocated Blog Chapter 6

You can now create posts by clicking on the map!

ﬁi:le

Content

i Discard

Fetching posts

In this section, we will fetch the posts from the server and display them on the map.

Store action

We will fetch the posts each time the map bounds have changed due to the user panning or
zooming the map.

Fetch posts action

Let's create the posts-fetching action, but we need to tackle a problem first, though. What
the following happen:

1. The user moves the map.
2. A request A is made to the server.

[288]

Project 4 - Geolocated Blog

Chapter 6

® NSV W

The user moves the map again.
A request B is sent.

The response of request A is received.

For some reason, we receive the request B response before request A.
We set the list of posts from request B.

The list of posts is replaced from a no longer up-to-date request.

That's why we need to abort the previous requests if a new one is made. To do that, we will
use a unique identifier for each request:

1. Declare the unique identifier at the top of the posts. js file:

let fetchPostsUid = 0

2. Now we can add the new fetchPosts action, which fetches the posts in the map
bounds only if it's different from last time (with an additional force parameter
in the payload):

async fetchPosts ({ commit, state }, { mapBounds,
let oldBounds = state.mapBounds

o

force }) {

(force || !'oldBounds || !oldBounds.equals (mapBounds)) A

const requestId = ++fetchPostsUid

// Request
const ne = mapBounds.getNorthEast ()
const sw = mapBounds.getSouthWest ()
const query = ‘posts?ne=${
encodeURIComponent (ne.toUrlValue())
Yasw=5{
encodeURIComponent (sw.toUrlValue())
.

const posts = await $fetch (query)

// We abort if we started another query

if (requestId === fetchPostsUid) {
commit ('posts', |
posts,
mapBounds,

})

[289]

Project 4 - Geolocated Blog Chapter 6

The ++fetchPostsUid expression add 1 to fetchPostsUid and then
returns the new value.

We encode the map bounds as two points: North-East and South-West.

The way we abort the query is by comparing the unique ID we stored before making the
request (requestId) and the current ID counter (fetchPostsUid). If they are different, we
don't commit the result because it means another request was made (since we increment the
counter each time).

Action dispatching

In the maps store, let's create a setBounds action that will be dispatched when the maps is
idle after being panned or zoomed. This action will dispatch the fetchPosts from the
posts module:

1. Usethe { root: true } option to dispatch the action in a non-namespaced
way so you can reach the posts module one:

setBounds ({ dispatch }, value) {
dispatch ('posts/fetchPosts', {
mapBounds: value,

b A

root: true,
)
I

We have created another action in the maps module because it is related to
the map and it could do more in the future than just dispatching another
action.

[290]

Project 4 - Geolocated Blog Chapter 6

2. In the BlogMap.vue component, map the new setBounds action on the right
helper and add a 'map' ref and an 'idle' event listener to the map:

<googlemaps—-map
ref="map"
:center="center"
:zoom="zoom"
:options="mapOptions"
@Qupdate:center="setCenter"
@Qupdate:zoom="setZoom"
@click="onMapClick"
@idle="onIdle"

>

3. And add the corresponding onIdle method to dispatch the setBounds action
and pass the map bounds:

onIdle () {
this.setBounds (this.S$refs.map.getBounds ())
Hy

Refresh the app and look for the post s mutations in the dev tools when you pan or zoom
the map.

Displaying markers
Still in the BlogMap component, we will use the googlemaps-marker again to loop
through the posts and display a marker for each of them. Map the posts and currentPost

getters, plus the selectPost action, on the right helper and add the markers loop inside
the googlemaps-map component:

<googlemaps-marker
v—for="post of posts"
:key="post._id"
:label="{
color: post === currentPost ? 'white' : 'black',
fontFamily: 'Material Icons',
fontSize: '20px',
text: 'face',
}"
:position="post.position"
:z—index="5"
@click="selectPost (post._id)"
/>

[291]

Chapter 6

Project 4 - Geolocated Blog

You can now refresh the app and see the posts you added earlier appear on the map! If you

click on a post marker, its icon should turn white too.

o Flelfire-peliiter
{11] -
@ &

r:-_\..\ D15 o

Ot T
e L]
= _du 8 Mai 1 945 o

% s = b=

- ot

% 2

o

>

=

Y,
-_'.:_ '.‘ i
=
it genis laval &
ar oS

Lae MTIErs
S B Chemin des MUrler
{\0 AL

(1]

Login and logout

We are not done with the post-fetching yet--we need to react to a user logging in or out:
e When the user log out, we will clear the posts list and the last registered map

bounds so the posts can be fetched again
e When the user log in, we will fetch the posts again and eventually re-select the

previously selected post

[292]

Project 4 - Geolocated Blog Chapter 6

Logout

First, we will implement the logout action.

1. Let's add a 1ogout action in the posts Vuex module that clears the posts
fetching data:

logout ({ commit }) {
commit ('posts', A
posts: [],
mapBounds: null,
})
b

2. We can call this from the logout action in the main store (in the
store/index. js file):

logout ({ commit, dispatch }) {

commit ('user', null)
Sfetch('logout')
//

dispatch('posts/logout')
b

This is going to work, but we can improve this code--we could define the 1ogout
action of the posts namespaced submodule as a root action. That way, when we
dispatch the ' logout ' action, both the 1ogout and the posts/logout will be
called!

3. Use this object notation in the posts module for the 1ogout action:

logout: {
handler ({ commit }) {
commit ('posts', |
posts: [1,
mapBounds: null,
})
}!
root: true,
}!

The handler property is the function called on this action, and the
root60;Boolean property indicates if this is a root action. Now the logout action
is no longer namespaced regarding the action dispatching system, and will be
called if a non-namespaced 'logout ' action is dispatched.

[293]

Project 4 - Geolocated Blog Chapter 6

The state, getters, commit, and dispatch made inside this 1ogout action
are still namespaced to the module. Only its invocation is no longer
namespaced!

4. You can remove the dispatch ('posts/logout') line from the 1ogout action
on the main store.

Login
When the user is successfully logged in, we will dispatch a non-namespaced 'logged-in"
action.

1. Back in the posts module, add the 1ogged-in action using the new object
notation:

'logged—-in': {
handler ({ dispatch, state }) {
if (state.mapBounds) {
dispatch('fetchPosts', {
mapBounds: state.mapBounds,
force: true,
)
}
if (state.selectedPostId) {
dispatch('selectPost', state.selectedPostId)
}
}I
root: true,
}I

2. In the main store 1ogin action, dispatch this new logged-in action if the user is
successfully authenticated:

if (user) {
//
dispatch('logged—-in')
}

[294]

Project 4 - Geolocated Blog Chapter 6

Selecting a post

This is the last section of this chapter! We will now create the post content component that
will display the title, content, location info, and the comment list. A post details object is the
same as a post object plus the author data, the list of the comments, and the authors for each
comment.

Post details

Let's first modify our posts Vuex module in preparation for the posts details.

Store changes for post selection and sending

1. Add a selectedPostDetails data property in the state and add the
corresponding getter and mutation:

state () {
return {
VA

// Fetched details for the selected post
selectedPostDetails: null,
}
}I

getters: {

VAR

selectedPostDetails: state => state.selectedPostDetails,
I

mutations: |
VA
selectedPostDetails (state, value) {
state.selectedPostDetails = value
}I
}I

[295]

Project 4 - Geolocated Blog Chapter 6

2. In the selectPost, fetch the details with a request to the /post/<id> route on
the server:

async selectPost ({ commit }, id) {
commit ('selectedPostDetails', null)
commit ('selectedPostId', id)
const details = await $fetch(posts/${id}")
commit ('selectedPostDetails', details)
}I

3. Also add a new unselectPost action:

unselectPost ({ commit }) {
commit ('selectedPostId', null)

b

Post Content component

We the user clicks on a blog marker on the map, we need to display its content in the side
pane. We will do this in a dedicated PostContent component.

1. Let's implement the content /PostContent.vue component by starting the
initial template:

<template>
<div class="post-content">
<template v-if="details">
<div class="title">

{{ details.title }}

{{ details.author.profile.displayName }}

{{ details.date | date }}

</div>
<div class="content">{{ details.content }}</div>
<!-— TODO Comments -->
<div class="actions">

<button

type="button"

class="icon-button secondary"
@click="unselectPost">

<i class="material-icons">close</i>

[296]

Project 4 - Geolocated Blog Chapter 6

</button>
<!-— TODO Comment input -->
</div>
</template>
<div class="loading-animation" v-else>
<div></div>
</div>
</div>
</template>

The first part is the header with the author avatar, the title, author name, and
creation date. Then we display the post content, followed by the comment list,
and an action toolbar at the bottom. It will also display a loading animation before
we receive the post details response from the server.

2. Then we need a script section with the details getter and the unselectPost
action from the posts module:

<script>
import { createNamespacedHelpers } from 'vuex'

// posts module

const {
mapGetters: postsGetters,
mapActions: postsActions,

} = createNamespacedHelpers ('posts')

export default {
computed: {
.. .postsGetters ({
details: 'selectedPostDetails',
)y
}I

methods: {
...postsActions ([
'unselectPost’',
1)
}I
}

</script>

[297]

Project 4 - Geolocated Blog Chapter 6

Now you can try selecting a post marker and see its content displayed in the right side

panel:
' My favorite restaurant
Guillaume CHAU 09/10/2017

This is the right place to eat! The
service is very nice and the dishes are
tasty and generous.

You can have a full set menu (starter +
main course + dessert + coffee or tea)
for 28€ and you can choose almost
anything on the entire menu!

X

Location info and scoped slots

We are going to display information about the current post location at the top of the right
sidebar, with the name and the address. The components from vue-googlemaps that we
are going to use take advantage of a Vue feature called "scoped slots."

Scoped slots to pass data to the parent

You should already know what slots are--they allow us to put elements or components
inside other components. With scoped slots, the component where the <slot> parts are
declared can pass down data to the view that is being embedded in the slot.

For example, we could have this component with a default slot that has a list of results in
the results property:

<template>
<div class="search">
<slot />
</div>
</template>

<script>
export default {

[298]

Project 4 - Geolocated Blog Chapter 6

computed: {
results () {
return /* ... */
}I
}I
}
</script>

We could pass this property to the external view that includes parts of templates through
the slot like this:

<slot :results="results" />

When using this component, you can retrieve the scoped data by wrapping your code with
a template with a slot-scope attribute. All the scoped data will be available in this
attribute object:

<Search>
<template slot-scope="props">
<div>{{props.results.length}} results</div>
</template>
</Search>

The <template> tag is not necessary if it has only one child.

This is how the components of the vue-googlemaps library that we will use shortly will
give us back the data from Google Maps.

Scoped slots are very useful too when combined with a loop:

<slot v—-for="r of results" :result="r" />

When using it, the content of the slot will be repeated and will pass down the current item:

<Search>

<div slot-scope="props" class="result">{{props.result.label}}</div>
</Search>

[299]

Project 4 - Geolocated Blog Chapter 6

In this example, if the results computed property returns three items, we will have three
<div> displaying the result labels.

Implementing of the component

We will now use this new Scoped slot concept to display the information about the place
associated with the Blog post.

1. Let's create a small component named PlaceDetails.vue in the
components/content folder that displays the name and the address of a
location:

<script>
export default {
props: {
name: String,
address: String,

}I

render (h) {
return <div class="details">
<div class="name"><i class="material-icons">place</i>
{this.name}</div>
<div class="address"> {this.address}</div>
</div>
b
}

</script>
Then we will implement the LocationInfo.vue component.

2. First the template, where we use either the googlemaps-place-details
component, if we have a Google Maps placeId stored on the post, or else the
googlemaps-geocoder component that will find the most relevant
corresponding addresses from the position of the post, and all by retrieving the
results with scoped slots:

<template>
<div class="location-info" v-if="currentPost">
<!-— Place ——>

<googlemaps-place-details
v—-if="currentPost.placeId"
:request="{
placeId: currentPost.placeld
}ll>

[300]

Project 4 - Geolocated Blog

Chapter 6

<PlaceDetails
slot—scope="props"
v-if="props.results"
:name="props.results.name"
raddress="props.results.formatted_address"
</googlemaps—place—-details>

<!-- Position only -->
<googlemaps—geocoder
v-else
:request="{
location: currentPost.position,
P>
<PlaceDetails
slot—scope="props"
v-if="props.results"
:name="props.results[l] .placeDetails.name"

/>

:address="props.results[0].formatted_address"

</googlemaps—geocoder>
</div>
<div v-else></div>
</template>

3. In the script part map the currentPost getter from the post s module and

import the PlaceDetails component we just created:
<script>
import PlaceDetails from './PlaceDetails.vue'

import { createNamespacedHelpers } from 'vuex'

// posts module

const {
mapGetters: postsGetters,
} = createNamespacedHelpers ('posts')

export default {
components: {

PlaceDetails,
}I
computed: postsGetters ([
'currentPost',
1)
}
</script>

[301]

Project 4 - Geolocated Blog Chapter 6

Now, if you select or draft a post, you should see the location info display at the top of the
right side panel:

9 Restaurant 310 & table

UYL LS

Comments - functional components

This is the last section of the chapter, where we will implement post components and learn
more about faster functional components.

Store changes for comments

Before going into functional components, we need to lay the groundwork in the Vue

1. In the posts Vuex module, we need a new mutation that will add a comment to
a post directly:
addComment (state, { post, comment }) {
post.comments.push (comment)

}I

2. Add the new sendComment action too that sends a query to the server to the
/posts/<id>/comment route and adds it to the selected post:

async sendComment ({ commit, rootGetters }, { post, comment }) {

const user = rootGetters.user
commit ('addComment', {
post,
comment : {
. .comment,

date: new Date (),
user_id: user._id,
author: user,
}I
)

await S$fetch (' posts/${post._id}/comment , {
method: 'POST',

[302]

Project 4 - Geolocated Blog Chapter 6

body: JSON.stringify (comment),
})
b

We use rootGetters from the action context to retrieve the user data,
because it is not in this namespaced module.

Functional component

Each component instance in Vue has to set up a few things when it is created, such as the
data reactivity system, component life cycles, and so on. There is a lighter variant of
components called functional components. They don't have any state of their own (you
can't use the this keyword) and can't be displayed in dev tools, but they have a very nice
advantage in some cases--they are much faster and use less memory!

The Comments on our blog posts are good candidates for being functional because we
could have to display a lot of them.

To create a function component, add the functional: true option to its definition object:

export default {
functional: true,
render (h, { props, children }) {
return h(h${props.level} , children)
}I
}

Since the component doesn't have a state and we don't have access to this, the render
function gets a new context parameter containing the props, event listeners, children
content, slots, and other data. You can find a full list on the official documentation (nttps:/

/vuedjs.org/v2/guide/render-function.html#Functional-Components).

When writing functional components, you don't always need to declare
props. You get everything as props, but they also get passed down in
context.data

[303]

https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components
https://vuejs.org/v2/guide/render-function.html#Functional-Components

Project 4 - Geolocated Blog Chapter 6

Not that you can also use a template with the functional attribute instead of the
functional: true option:

<template functional>
<div class="my-component">{{ props.message }}</div>
</template>

1. Now create a new Comment . vue component alongside the PostContent .vue
one:

<script>
import { date } from '../../filters'

export default {
functional: true,

render (h, { props }) {
const { comment } = props
return <div class="comment">
<img class="avatar" src=
{comment .author.profile.photos[0] .value} />
<div class="message">
<div class="info">
{comment.author.profile.displayName}

{date (comment.date) }
</div>
<div class="content">{comment.content}</div>
</div>
</div>
}I
}
</script>

2. Back to our PostContent component; let's add the comment list in the center of
the pane and the comment form to the bottom of the pane:

<div class="comments">
<Comment
v—for=" (comment, index) of details.comments"
:key="index"
:comment="comment" />

</div>

<div class="actions">
<l—= .. ==
<input

v-model="commentContent"

[304]

Project 4 - Geolocated Blog Chapter 6

placeholder="Type a comment"
@keyup.enter="submitComment" />
<button
type="button"
class="icon-button"
@click="submitComment"
:disabled=""!commentFormvalid">
<i class="material-icons">send</i>
</button>
</div>

3. Then add the Comment component, the commentContent data property, the
commentFormValid computed property, the sendComment Vuex action, and the
submitComment method in the script section:

import Comment from './Comment.vue'

export default {
components: {

Comment,

}I
data () {

return {
commentContent: '',

}

}I
computed: {

...postsGetters ({
details: 'selectedPostDetails',

Py

commentFormValid () {
return this.commentContent

}I

}I
methods: {

...postsActions ([
'sendComment ',
'unselectPost’',

1)

async submitComment () {
if (this.commentFormValid) {

this.sendComment ({
post: this.details,
comment : {
content: this.commentContent,
}I
})

[305]

Project 4 - Geolocated Blog Chapter 6

this.commentContent = "'
}
}I
}I
}

You can now add comments to the selected post:

My favorite restaurant
Guillaume CHAU 09/10/2017

This is the right place to eat! The
service is very nice and the dishes are
tasty and generous.

You can have a full set menu (starter +
main course + dessert + coffee or tea)
for 28€ and you can choose almost
anything on the entire menu!

Guillaume CHAU 09/10/2017
Seems very nice!

Guillaume CHAU 09/10/2017
Would like to go someday

X Type a comment ‘ ‘

[306]

Project 4 - Geolocated Blog Chapter 6

Summary

In this chapter, we introduced the very important notion of state management through the
usage of the official Vuex library. This will help you build more complex applications and
improve their maintainability a lot. We used the Google OAuth API to authenticate our
users, embed Google Maps, and a whole Geolocated Blog! All of this was achieved by using
a Vuex store integrated into our application, making our components simpler and our code
easier to evolve.

Here are some ideas if you want to improve the app further:

e Display the number of thumbs-up on the post markers
¢ Allow editing or deletion of comments
¢ Add real-time updates with web-sockets

In the next chapter, we will learn more about server-side rendering, internationalization,
testing, and deployment.

[307]

Project 5 - Online Shop and
Scaling Up

In this chapter, we will quickly set up a "Fashion Store" app in order to focus on more
advanced topics, such as follows:

¢ Improving the compatibility of our CSS code with PostCSS and autoprefixer

¢ Linting our code with ESLint to improve its quality and style

Unit testing our Vue components

Localizing the app and taking advantage of the code-splitting feature of webpack
Enabling server-side rendering of the app in Nodejs

Building the app for production

Project 5 - Online Shop and Scaling Up Chapter 7

The app will be a simple wearable online shop that will look like this:

@ Shopping Cart X
Green Socks .
$3,99
Green Shirt .
$19,99
Grey Shirt

e S 65% 1
$6,99
53097

Advanced development workflow

In this first section, we will improve our development workflow with new tools and
packages. However, first, we need to set up our Fashion Store project.

[309]

Project 5 - Online Shop and Scaling Up Chapter 7

Setting up the project

1. Generate a new project using the vue init command like we did in chapter 5,
Project 3 - Support Center, and chapter 6, Project 4 - Geolocated Blog:

vue init webpack-simple e-shop
cd e-shop

npm install

npm install -S babel-polyfill

2. We will also install stylus:
npm i -D stylus stylus-loader

3. Remove the content of the src folder. Then, download the sources files (https://
github.com/Akryum/packt-vue-project—-guide/tree/master/chapteri—
download/src) and extract them in the src folder. Those contains all the app
source code that have been already done so that we can move forward faster.

4. We need to install a few more packages in the dependencies:
npm i —-S axios vue-router vuex vuex-router-sync

axios is a great library for making requests to the server and is
recommended by the Vue.js team.

Generating a quick development API

Previously, we had a full node server for the backend, but this time we will not focus on the
app features. So, we will use the json-server package to generate a very simple local API
for the purpose of this chapter:

1. Install json-server as a dev dependency:
npm i -D json-server

2. When we run this package, it will locally expose a simple REST API and use a
db . json file to store the data. You can download it (https://github.com/
Akryum/packt-vue-project—guide/blob/master/chapter7-download/db.json)

and put it in the project root directory. If you open it, you will see a few items for
sale and a comment.

[310]

https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/src
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/db.json

Project 5 - Online Shop and Scaling Up Chapter 7

3. Then, we will need to add a script to launch the json server. Add a new db script
to the package. json file:

"db": "json-server —--watch db.Jjson"

The preceding command will run the json-server package command-line tool
and watch the db . json file you just downloaded for changes so that you can edit
it easily. To try it, use npm run:

npm run db

By default, it will listen to the port 3000. You can already try it by opening the
http://localhost:3000/items REST address in your browser:

< C @

Enregistrer Copier

id:

title:

price:
originalPrice:
rating:

img:

id:
title:
price:
rating:

img:

JSON Données brutes En-tétes

() localhost:3000/items

1

"Blue Socks"

2.99

3.99

4.3
"http://lorempixel.com/400/400/abstract/1/"

2

""Green Socks"

3.99

3.9
"http://lorempixel.com/400/400/abstract/2/"

Launching the app

We are now ready to start the app. Open a new terminal and use npm run as usual:

npm run dev

[311]

Project 5 - Online Shop and Scaling Up Chapter 7

It should open a new browser window with the right address, and you should be able to
use the app:

Fashion Store

Green Socks

$3,99

Blue Socks
P -25%)

$2.99

Blue Shirt
$19.99 §FA

516,99

Green Shirt Red Shirt

$19,99 $19,99

g&sﬁ Black Backpack
99 @A

$6,99 $39,99

Auto-prefixing CSS with PostCSS

When writing CSS (or Stylus) code, we want it to be compatible with most browsers.
Fortunately, there are tools that will do this automatically for us, for example, by adding
vendor-prefixed versions of the CSS properties (such as -~webkit-user-select and -moz-
user-select).

PostCSS is a library specialized in CSS postprocessing. It has a very modular architecture; it
works by adding plugins to it that process the CSS in various ways.

[312]

Project 5 - Online Shop and Scaling Up Chapter 7

We don't have to install it. vue~1loader already has PostCSS included. We only have to
install the plugins we want. In our case, we need the autoprefixer package to make our
CSS code compatible with more browsers.

1. Install the autoprefixer package:
npm i -D autoprefixer

2. For PostCSS to be active, we will need to add a configuration file called
postcss.config. js in the project root directory. Let's tell PostCSS we want to
use autoprefixer in this file:

module.exports = {
plugins: |
require ('autoprefixer'),
J 14
}

That's it! Our code will now be processed by autoprefixer. For example,
consider this Stylus code:

.store-cart-item
user—-select none

The final CSS will be as follows:

.store-item[data-v-1laf8c5dc] {
-webkit-user—-select: none;
-moz—-user—-select: none;
-ms—user—select: none;
user-select: none;

Targeting specific browsers with browserslist

We can change what browsers are targeted by autoprefixer with the browserslist
configuration. It consists of a list of rules to determine which browsers to support. Open the
package. json file and look for the browserslist field. It should already have the default
values of the webpack-simple template, as follows:

|l> 1%"

4
"last 2 versions",
"not ie <= 8"

[313]

Project 5 - Online Shop and Scaling Up Chapter 7

The first rule takes the browsers that have more than 1% of usage share on the internet. The
second one additionally selects the last two versions of every browsers. Finally, we state
that we don't support Internet Explorer 8 or older.

The data used is provided by the site (https://caniuse.com/), which is
specialized in browser compatibility data.

You can now target even older browsers by customizing this field. For example, to target
Firefox 20 and later versions, you would add the following rule:

"Firefox >= 20"

You can find more information about browserslist in its repository
(https://github.com/ai/browserslist).

Improving code quality and style with ESLint

Enforcing good coding practices and quality is essential when working on a project with
other developers. It ensures that no syntax or basic errors are made (such as forgetting to
declare a variable), and it helps to keep the source code clean and consistent. This process is
called linting.

ESLint is the recommended linting tool by the Vue.js team. It provides a set of linting rules
that can be turned on and off to check the code quality. More rules can be added by plugins
and some packages define a preset of enabled rules.

1. We will use the Standard]S preset and the eslint-plugin-vue package, which
adds more rules that help follow the official Vue styleguide (https://vuejs.org/
v2/style—guide/ﬁ

npm i -D eslint eslint-config-standard eslint-plugin-vue@beta

2. The eslint-config-standard package has four peer dependencies that we
need to install as well:

npm i -D eslint-plugin-import eslint-plugin-node eslint-plugin-
promise eslint-plugin-standard

[314]

https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://caniuse.com/
https://github.com/ai/browserslist
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/
https://vuejs.org/v2/style-guide/

Project 5 - Online Shop and Scaling Up Chapter 7

3. In order to use babel for the JavaScript code when ESLint parses the files, we will
need an additional package:

npm i -D babel-eslint

Configuring ESLint

Create anew .eslintrc. js file in the project root directory and write the following
configuration:

module.exports = {
// Use only this configuration
root: true,
// File parser
parser: 'vue-eslint-parser',
parserOptions: {
// Use babel-eslint for JavaScript
'parser': 'babel-eslint',
'ecmaVersion': 2017,
// With import/export syntax
'sourceType': 'module'
}I
// Environment global objects
env: {
browser: true,
es6: true,
}I
extends: |
/7
https://github.com/feross/standard/blob/master/RULES.md#javascript-standard
-style
'standard’,
// https://github.com/vuejs/eslint-plugin-vue#bulb-rules
'plugin:vue/recommended’,
JI
}

First, we use vue-eslint-parser to read the files (including the .vue files). It uses
babel-eslint when parsing the JavaScript code. We also specify the EcmaScript version
of JavaScript and that we use the import /export syntax for the modules.

Then, we tell ESLint that we expect to be in a browser and ES6 (or ES2015) JavaScript
environment, which means we should be able to access globals such as window or Promise
without ESLint raising undefined variable errors.

[315]

Project 5 - Online Shop and Scaling Up Chapter 7

We also specify which configurations (or presets) we would like to use--standard and
vue/recommended.

Customizing the rules

We can change what rules are enabled and modify their options with the rules object. Add
the following to the ESLint configuration:

rules: {
// https://github.com/babel/babel-eslint/issues/517
'no—use-before-define': 'off',
'comma-dangle': ['error', 'always-multiline'],

b

The first line disables the no~use-before-define rule, which has a bug when using the
. . . destructuration operator. The second one changes the commad-dangle rule to enforce
putting a trailing , comma at the end of all the array and object lines.

The rules have a status, which can take on those three values--'off' (or
0), 'warn' (or 1), and 'error' (or 2).

Running ESLint

To run eslint on the src folder, we will need a new script in the package. json:

"eslint": "eslint --ext .js,.Jjsx,.vue src"

You should note some errors in the console:

Some of those issues can be fixed by ESLint by adding the —-fix argument to the preceding
eslint command:

"eslint": "eslint —--ext .js,.jsx,.vue src ——fix"

[316]

Project 5 - Online Shop and Scaling Up Chapter 7

Run it again, and you should see only one error remaining;:

/src/main. js
20:3 Do not use 'new' for side effects no-new

ESLint tells us we shouldn't create new objects without keeping their reference in a variable.
If we look at the corresponding code, we see that we indeed create a new instance of Vue in
themain. js file:

new Vue ({
el: '"#app',
router,
store,
.. .App,

})

If you look at the ESLint error, you can see the code of the rule--no-new.
You can open the https://eslint.org/ website and type it in the search
field to get the rule definition. If it's a rule added by a plugin, it should
have the name of the plugin followed by a slash, for example,
vue/require-v-for-key.

This code is written as intended, since this is the standard way of declaring a Vue app. So,
we need to disable this rule for this specific line of code by adding a special comment just
before:

// eslint-disable—-next-line no-new
new Vue ({

})

ESLint inside Webpack

For now, we have to manually run the es1int script to check our code. It would be even
better if we were able to check our code when it is processed by Webpack, so it would be
fully automatic. Fortunately, this is possible thanks to the eslint-loader.

[317]

https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/
https://eslint.org/

Project 5 - Online Shop and Scaling Up Chapter 7

1. Install it in the dev dependencies alongside the friendly-errors-webpack-
plugin package, which will improve the console messages:

npm i -D eslint-loader friendly-errors-webpack-plugin

Now we have to change the webpack configuration to add a new ESLint loader
rule.

2. Edit the webpack.config. js file and add this new rule at the top of the
module.rules option:

module: |
rules: [
{
test: /\. (jsx?|vue)$/,
loader: 'eslint-loader',
enforce: 'pre',

b
/7

3. Additionally, we can enable the friendly-errors-webpack-plugin package.
Import it at the top of the file:

const FriendlyErrors = require ('friendly-errors—webpack-plugin')

We can't use the import/export syntax here, since it will be executed in
nodejs.

4. Then, add this plugin when we are in development mode by adding an else
condition at the end of the configuration file:

} else {
module.exports.plugins = (module.exports.plugins ||
[1) .concat ([
new FriendlyErrors(),

1)

[318]

Project 5 - Online Shop and Scaling Up Chapter 7

Restart webpack by rerunning the dev script and remove a comma somewhere in
the code. You should see the ESLint error displayed in the webpack output:

in ./src/main.js

/Users/guillaumechau/Documents/Projets/packt-vue-project-guide/chapter7-full/src/main.js
25:11 Missing trailing comma comma-dangle

In the browser, you should now see the error overlay:

& X @ @ localhost:8080 e O ¥ vy IiNn @

./src/main.js

/Users/gquillaumechau/Documents/Projets/packt-vue-project-
guide/chapter7-full/src/main.js

Missing trailing comma

@ multi (webpack)-dev-server/client?http://localhost:8080
webpack/hot/dev-server ./src/main.js

If you fix the error by putting the comma back again, the overlay will close and
the console will display a friendly message:

[319]

Project 5 - Online Shop and Scaling Up Chapter 7

Unit testing with Jest

Important code and components should be unit tested to ensure that they are working as
intended and to prevent most regressions when the code evolves. The recommended test
runner for Vue components is Jest from Facebook. It is quite fast with a cache system and

has an handy snapshot feature to help detect regressions even more.
1. First, install Jest and the official Vue unit testing tools:

npm i -D jest vue-test-utils

2. We also need a few utilities related to Vue to compile the . vue files with jest-
vue and to take snapshots of the components:

npm i -D vue-jest Jjest-serializer-vue vue-server-renderer

The recommended way to get the HTML render of a component in node is
using the vue-server-renderer package used to do server-side

rendering as we will see later in the chapter.

3. Finally, we will need some babel packages to support babel compilation and
webpack dynamic imports inside Jest:

npm i -D babel-jest babel-plugin-dynamic-import-node

Configuring Jest

To configure Jest, let's create a new jest.config. js file in the project root directory:

module.exports = {
transform: {
'LA\\.Jsx?$': '<rootDir>/node_modules/babel-jest’',
'.+\\.vue$': '<rootDir>/node_modules/vue-jest',

I
snapshotSerializers: |
'<rootDir>/node_modules/jest-serializer-vue',

Is
mapCoverage: true,

[320]

Project 5 - Online Shop and Scaling Up Chapter 7

The transform option defines processors for the JavaScript and Vue files. Then, we tell Jest
to use jest-serializer-vue to serialize the snapshots of the components. We will also
enable the source maps with the mapCoverage option.

You can find more configuration options at the Jest website (https://facebook.github.io/
jest/).

Babel configuration for Jest

To support JavaScript import /export modules and dynamic imports inside Jest, we will
need to change our babel configuration when the tests are run.

When using Jest, we are not using webpack and the loaders we use to
build the real application.

We need to add two babel plugins to the configuration, when the NODE_ENV environment
variable is set to "test":

{

"presets": [
["env", { "modules": false }],
"stage—-3"

] ’

"env": {
"test": {

"plugins": [
"transform-es2015-modules—commonijs",
"dynamic-import—-node"

1

}
}
¥

The transform-es2015-modules-commonjs plugin adds support for import /export
syntax to Jest, and the dynamic-import-node adds support for dynamic imports.

When run, Jest will automatically set the NODE_ENV environment variable
to "test'.

[321]

https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://facebook.github.io/jest/

Project 5 - Online Shop and Scaling Up Chapter 7

Our first unit test

To be recognized by Jest anywhere by default, we need to call our test files .test.js or
.spec.js. We will test the BaseButton.vue component; go ahead and create a new
BaseButton.spec. js file next to it in the src/components folder.

1. First, we will import the component and the shallow method from vue-test-
utils:

import BaseButton from './BaseButton.vue'
import { shallow } from 'vue-test-utils'

2. Then, we will create a tests suite with the describe function:
describe ('BaseButton', () => {
// Tests here
})
3. Inside the tests suite, we can add our first unit test with the test function:
describe ('BaseButton', () => {
test ('click event', () => {
// Test code
})
})

4. We will test whether the c1ick event is emitted when we click on the
component. We need to create a wrapper object around the component that will
provide useful functions to test the component:

const wrapper = shallow (BaseButton)

5. Then, we will simulate a click on the component:

wrapper.trigger ('click"')

6. Finally, we will check whether the c1ick event was emitted using the Jest
expect method:

expect (wrapper.emitted () .click) .toBeTruthy ()

[322]

Project 5 - Online Shop and Scaling Up Chapter 7

7. Now, let's add a script in the package. json file to run Jest:

"jest": "jest"

8. Then, use the usual npm run command:
npm run jest

The tests are launched and should pass as follows:

PASSY| src/components/BaseButton.spec.js
BaseButton
click event (13ms)

Test Suites: 1 passed, 1 total
Tests: 1 passed, 1 total
Snapshots: @ total
Time: 1.809s
Ran all test suites.

To learn more about unit testing Vue components, you can visit the official guide
at https://vue-test-utils.vuejs.org/

ESLint and Jest globals

If we run ESLint now, we will get errors related to the Jest keywords such as describe,
test, and expect

'describe' is not defined no-undef

'test' is not defined no-undef

We need to make a tiny change to our ESLint configuration--we have to specify the jest
environment; edit the .eslintrc. s file:

// Environment global objects
env: {

browser: true,

es6: true,

jest: true,
s

Now, ESLint will know about the Jest keywords and will stop complaining.

[323]

https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/
https://vue-test-utils.vuejs.org/

Project 5 - Online Shop and Scaling Up Chapter 7

Jest snapshots

Snapshots are strings that are saved and compared each time tests are run to detect
potential regression. They are mostly used to save the HTML render of component, but can
be used for any value as long as it make sense to store it between tests and compare it.

For our Vue component, we will snapshot the HTML render of it using the server-side
Rendering tool called vue-server-renderer. We will need the createRenderer method
from this package:

import { createRenderer } from 'vue-server-renderer'

At the start of the test, we instanciate a renderer instance, then we wrap the component
with shallow and start rendering the component to a String. Finally, we compare the result
with the previous one. Here is an example of snapshot test for the BaseButton component,
passing some props values and the default slot content:

test ('snapshot', () => {
const renderer = createRenderer ()
const wrapper = shallow (BaseButton, {

// Props values
propsData: {
icon: 'add',
disabled: true,
badge: '3',
}!
// Slots content
slots: {
default: 'Add Item',
}!
})
renderer.renderToString (wrapper.vm, (err, str) => {
if (err) throw new Error(err)
expect (str) .toMatchSnapshot ()
})
})

If the snapshot test is run for the first time, it will create and save the
snapshot to a __snapshots__ folder next to it. If you are using a
versioning system such as git, you need to add these snapshot files to it.

[324]

Project 5 - Online Shop and Scaling Up Chapter 7

Updating the snapshots

If you modify a component, there is a chances that its HTML render will change too. This
means its snapshots will no longer be valid and the Jest tests will fail. Fortunately, the jest
command has a -——updateSnapshots argument. When used, all the failing snapshots will
be resaved and will pass.

1. Let's add a new script in our package. json file:
"jest:update": "jest —-—updateSnapshot"

2. Modify the BaseButton component by changing a CSS class, for example. If
your run the Jest tests again, you should get an error that says, the snapshots
don't match anymore.

FAIL src/components/BaseButton.spec.js
BaseButton
click event (21ms)
icon prop (14ms)
snapshot (20ms)

expect() . toMatchSnapshot()

does not match

3. Now, update the snapshot with the new script:
npm run jest:update

All the tests should pass now, and the BaseButton snapshot should be updated:

PASS'| src/components/BaseButton.spec.js
BaseButton
click event (14ms)
icon prop (1@ms)

snapshot (13ms)

updated.
Snapshot Summary
updated in 1 test suite.

[325]

Project 5 - Online Shop and Scaling Up Chapter 7

You should run this command only when you are sure there are no
regressions elsewhere. A good idea is to run the tests normally just before,
to make sure only the modified component snapshot fails, as expected.
After you have updated the snapshots, use the normal test command.

Complementary topics

In this section, we will cover a few more topics that can be useful for bigger apps.

Internationalization and code-splitting

If the app is to be used by people in different countries, it should be translated to be more
user-friendly and appealing. To localize the texts of the app, you can use the recommended

vue-118n package:
npm i -S vue-il8n

Using vue-118n, we will add a link in the AppFooter component to a new page where the
user can select the language. Only the link and this page will be translated, but you can
translate more parts of the app if you wish. vue-1i18n works by creating a 118n object from

it with the translated messages and injecting it into the Vue app.

1. Inthe src/plugins. js file, install the new plugin into Vue:
import VueIl8n from 'vue-il8n'

/] ...
Vue.use (VueIl8n)

2. Let's create a new folder called i18n in the project directory. Download the
locales ﬁﬂder(https://github.com/Akryum/packtfvuefprojectfguide/tree/
master/chapter7-download/locales) containing the translation files and put it
inside. You should have, for example, the en translations in the
il8n/locales/en. s file.

[326]

https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter7-download/locales

Project 5 - Online Shop and Scaling Up Chapter 7

3. Create a new index. js file that exports the list of available languages:

export default [
'en',
"fr',
'es',
'de',
]
We will need two new utility functions:

e createIl8n: To create the 118n object, with a locale parameter.

e getAutoLang: That returns the two-letter language code set by the user in the
browser, for example, en or f£r. Most of the time, this will be the OS language
setting.

4. In the src/utils folder, create anew 118n. js file and import both vueI18n
and the list of available locales we defined earlier:

import VueIl8n from 'vue-il8n'
import langs from '../../i18n'

5. At the time of writing, we need the babel-preset-stage-2 (or less) to allow
Babel to parse the dynamic imports. In the package. json file, change the
babel-preset-stage-3 package:

"babel-preset-stage-2": "*6.24.1",

6. Run npm install to update your packages.
7. Edit the .babelrc file in the root folder and change stage-3 to stage-2.
8. In order to switch to stage-2, do the following installation:

npm install —--save-dev babel-preset-stage-2

Code-splitting with dynamic imports

When we create the i18n object, we want to load only the translations of the selected locale
via the locale argument. To do that, we will make a dynamic import of the file with the
import function. It takes the path as the argument and returns a Promise, which will
eventually resolve to the corresponding JavaScript module once it is loaded from the server.

[327]

Project 5 - Online Shop and Scaling Up Chapter 7

In webpack, this dynamic import feature is sometimes referred as 'code splitting', because
webpack will move the asynchronous module to another compiled JavaScript file called a
chunk.

Here is an example of an asynchronous module loaded with a dynamic import:

async function loadAsyncModule () {
await module = await import ('./path/to/module’)
console.log('default export', module.default)
console.log('named export', module.myExportedFunction)

}

You can use variables in the imported path, as long as it has some information about where
webpack can find the files. For example, this code will not work:

import (myModulePath)

However, the following one will work fine as long as the variable path is simple (without
L)

import (*./data/${myFileName}. json")

In this example, all the files with the json extension in the data folder
will be added to the build into asynchronous chunks, because webpack
can't guess which ones you will really use at runtime.

Asynchronously loading big JavaScript modules with dynamic imports can reduce the size
of the initial JavaScript code sent to the browser when opening the page. In our app, it
allows us to load only the relevant translations file instead of including them all in the
initial JavaScript file.

If a module is already imported with a normal import in the main code
(the initial chunk), it will already be loaded and will not be split into
another chunk. In that case, you won't have the benefits of the code-
splitting feature and the initial file size won't be reduced. Note that you
can synchronously use other modules with the normal import keyword
inside the dynamically loaded module: they will be put together in the
chunk (if they aren't already included in the initial chunk).

The 118n object is created with the VueI18n constructor from the vue-i18n package. We
will pass the 1ocale argument.

[328]

Project 5 - Online Shop and Scaling Up Chapter 7

Here is what the createI18n function should look like:

export async function createIl8n (locale) {
const { default: localeMessages } = await
import (*../../il8n/locales/${locale}")
const messages = {
[locale]: localeMessages,

}

const 118n = new VueIl8n ({
locale,
messages,

})

return 118n

As you can see, we need to take the default value of the module, because
we exported the messages using export default.

The code using async/await above can be written using Promises:

export function createIl8n (locale) {

return import (*../../i18n/locales/${locale}’)
.then (module => {

const localeMessages = module.default

//
H)

Automatically loading the user locale

Next, we can use navigator.language (or userLanguage for Internet Explorer

compatibility) to retrieve the locale code. Then, we will check whether it is available in the
langs list or if we have to use the default en locale.

1. The getAutoLang function should look like this:

export function getAutoLang () {
let result = window.navigator.userLanguage | |
window.navigator.language
if (result) {
result = result.substr (0, 2)

[329]

Project 5 - Online Shop and Scaling Up Chapter 7

}

if (langs.indexOf (result) === -1) {
return 'en'
} else {

return result

}

Some browsers may return the code in the en-Us format, but we only
need the first two characters.

2. Inthe src/main. js file, import the two new utility functions:
import { createIl8n, getAutolang } from './utils/il8n'

3. Then, modify the main function:
1. Retrieve the preferred locale using getAutoLang.

2. Create and wait for the i18n object with the createI18n function.
3. Inject the 118n object into the root Vue instance.

It should now look like this:

async function main () A
const locale = getAutoLang()
const i18n = await createIl8n(locale)
await store.dispatch('init")

// eslint-disable-next-line no-new
new Vue ({
el: '"#app',
router,
store,
il8n, // Inject 118n into the app
.. .App,
})
}

Don't forget the await keyword in front of createI18n, or else you will
get the Promise instead.

[330]

Project 5 - Online Shop and Scaling Up Chapter 7

You can now open the network pane in the browser devtools and refresh the page. The
translations module corresponding to the selected locale will be loaded by webpack in a
separate request. In this example screenshot, this is the 2.build. js file that is
asynchronously loaded:

® 200 GET ocale localho.. i docw... html
® 200 GET build.js localho.. script is
® 200 GET 2.build.js localho... script is

Changing Language page

For now, nothing really changed in the app, so let's add the page that will allow us to select
the language.

1. Inthe src/router. js file, import the PageLocale component:
import PageLocale from './components/PageLocale.vue'

2. Then, add the 1ocale route in the routes array, just before the last one (with the
* path):

{ path: '/locale', name: 'locale', component: PageLocale },

3. In the AppFooter.vue component, add this router link to the template:

<div v-if="S$route.name !== 'locale'">
<router-link :to="{ name: 'locale' }">{{ $t('change-lang') }}
</router-link>

</div>

As you can see in the preceding code, we use the $t provided by vue-i18n to
display a translated text. The argument correspond to the key in the locale file.
You should now see the link in the app footer:

Vue.js
Changer de langue

[331]

Project 5 - Online Shop and Scaling Up Chapter 7

The links takes us to the language selection page, which is already fully translated
using vue-i18n:

Changer de langue

Retour

You can look at its source code in the components/PagelLocale.vue file.

When you click on a locale button, the corresponding translations are loaded if
they aren't already. In the network pane of the browser devtools, you should see a
request made to other chunks each time:

® 200 GET 1.build.js localhg... script 15
® 200 GET 3.build.js localho... script s
® 200 GET 4.build.|s localhg... script 15

Server-side rendering

Server-side Rendering (SSR) consists of running and rendering the app on the server,
before sending the HTML back to the browser. This has two main advantages:

e Better Search Engine Optimization (SEO), since the initial content of the
application will be rendered in the page HTML. This is important since no search
engine is indexing an asynchronous JavaScript app (for example, when you have
a spinner).

e Slower networks or devices will display contents faster--the rendered HTML
doesn't need the JavaScript to be shown to the user.

[332]

Project 5 - Online Shop and Scaling Up Chapter 7

However, using SSR also brings some trade-offs:

¢ The code need to be able to run on the server (unless it is in client-side only hooks
such as mounted). Also, some libraries may not play well on the browser and
may require special treatments.

¢ The load will increase on the server, since it is doing more work.

¢ The development setup is a bit more complex.

So using SSR isn't always a good idea, especially if the time the first content is shown isn't
critical (for example, an admin dashboard).

Universal App Structure

Writing a Universal App that runs both on the client and the server requires changing the
architecture of the source code.

When running on the client, we are in a fresh context each time the page is loaded. That's
why we used singletons instance of the root instance, the router, and the store until now.
However, now we need to have a fresh context on the server as well--the problem is,
Node js is stateful. The solution is creating a fresh new root instance, router, and store for
each request handled by the server.

1. Let's start with the router. In the src/router. js file, wrap the router creation
into a new exported createRouter function:

export function createRouter () {

const router = new VueRouter ({
routes,
mode: 'history',
scrollBehavior (to, from, savedPosition) {
VR

by
})

return router

[333]

Project 5 - Online Shop and Scaling Up Chapter 7

2. We will do the same with the Vuex store. In the src/store/index. js file, wrap
the code into a new exported createStore function:

export function createStore () {
const store = new Vuex.Store ({
strict: process.env.NODE_ENV !== 'production',

//

modules: {
cart,
item,
items,
ui,
}I
)

return store

}

3. Let's also rename the src/main. js file to src/app. js. This will be our
universal file that creates the router, the store, and the Vue root instance. Change
the main function into an exported createApp function, which takes a context
argument and returns the app, the router, and the store:

export async function createApp (context) {
const router = createRouter ()
const store = createStore ()

sync (store, router)

const 118n = await createIl8n (context.locale)
await store.dispatch('init'")

const app = new Vue ({
router,
store,
i18n,
...App,
})

return {
app,
router,
store,

[334]

Project 5 - Online Shop and Scaling Up Chapter 7

Don't forget to change the imports for createRouter and createStore.

On the server, we won't select the initial locale the same way as in the client since we won't
have access to window.navigator. That's why we are passing the locale in the context
argument:

const 118n = await createIl8n(context.locale)

We also removed the el option from the root instance definition since it doesn't make sense
on the server.

Client entry

On the browser, the code will be started in the client entry file that we will write now.

1. Create anew src/entry-client. js file that will be the entry point for the
client bundle. It will get the user language, call the createApp function, and then
mount the app into the page:

import { createApp } from './app'
import { getAutolLang } from './utils/il8n'

const locale = getAutolLang()
createApp ({
locale,
}).then(({ app }) => {
app. $mount ('#app')
})

2. You can now change the entry path in the webpack.config. js file:
entry: './src/entry-client.js',

You can restart the dev script and check whether the app still works in the
browser.

[335]

Project 5 - Online Shop and Scaling Up Chapter 7

Server entry

Create a new src/entry-server. js file that will be the entry point for the server bundle.
It will export a function that gets a context object from the HTTP server we will build
later. It should return a Promise that resolves with the Vue app when it's ready.

We will pass an url attribute to the context so that we can set the current route like this:

router.push (context.url)

Similarly to the client entry, we also use the createApp function to create the root app
instance, the router, and the store. entry-server. js should look like this:

import { createApp } from './app'

export default context => {
return new Promise (async (resolve, reject) => {
const { app, router, store } = await createApp (context)
// Set the current route
router.push (context.url)
// TODO get matched components to preload data
// TODO resolve (app)

We return a Promise because we will send the application app when we
will have finished all the operations.

The app root instance will be send back to what we call the renderer (kind of like when we
did Jest snapshots) using resolve (app) . First, we need to take care of preloading the Vuex
store.

State management

When processing a request, we need to fetch the data on the relevant components before
rendering the app. That way, the data will already be displayed when the HTML is loaded
by the browser. For example, PageHome . vue fetches the store items and
PageStoreItem.vue retrieves the item details and comments.

[3361]

Project 5 - Online Shop and Scaling Up

Chapter 7

We will add a new asyncData custom option to those, so we can call it on the server when
doing SSR.

1. Edit the PageHome . vue component by adding this function that dispatches the
fetchItems action of the items store module:

asyncData ({ store }) {

return store.dispatch('items/fetchItems')
Hy

2. In the PageStoreItem.vue component, we need to call the

fetchStoreItemDetails action of the item store module, with the id
parameter of the route passed by the server:

asyncData ({ store, route }) {

return store.dispatch('item/fetchStoreItemDetails', {
id: route.params.id,

H)
by

3. Now that our components are ready, we will go back to entry-server.js. We

can use the router.getMatchedComponents () method to get the list of
components that matched with the current route:

export default context => {

return new Promise (async (resolve, reject) => {
const { app, router, store } =

await createApp (context)
router.push (context.url)

// Wait for the component resolution

router.onReady (() => {
const matchedComponents =
// TODO pre-load data
// TODO resolve (app)

}, reject)

router.getMatchedComponents ()

})

[337]

Project 5 - Online Shop and Scaling Up Chapter 7

4. We can then call all the asyncData options of these components and wait for
them to finish. We pass both the store and the current route to them, and when
they have all completed, we send the Vuex store state back to the renderer with
context.state = store.state.UsePromise.all (array) to wait for all the
asyncData calls:

router.onReady (() => {
const matchedComponents = router.getMatchedComponents ()

Promise.all (matchedComponents.map (Component => {
if (Component.asyncData) {
return Component.asyncData ({
store,
route: router.currentRoute,
3
}
})) .then(() => {
// Send back the store state
context.state = store.state

// Send the app to the renderer
resolve (app)
}) .catch(reject)
}, reject)

If an error occurs, it will reject the Promise we returned to the renderer.

Restoring the Vuex state on the client

The store state is serialized by the serverona __INITIAL_STATE__ variable in the HTML

page. We can use this to set the state even before the app is mounted, so the components
will have access to it.

Edit the entry-client. js file and use the store.replaceState method before
mounting the app:

createlApp ({
locale,
}).then(({ app, store }) => {
if (window.__ INITIAL_STATE__) {
store.replaceState (window.__ INITIAL_STATE_)
}

app.Smount ('#app')
})

[338]

Project 5 - Online Shop and Scaling Up Chapter 7

Now, the store will have the data sent by the server.

Webpack configuration

Our app code is now ready. Before continuing, we need to refactor our webpack
configuration.

We will need a slightly different webpack configuration for the client and the server. Itis a
good idea to have a common configuration file, which is then extended for the client and
the server. We can do this easily with the webpack-merge package that merges multiples
webpack configuration objects into one.

For the server configuration, we also need the webpack-node-externals package to
prevent webpack from bundling the packages in node_modules--this is not necessary since
we will run inside nodejs and not in the browser. All the corresponding imports will be left
as require statements so that node will load them itself.

1. Install the packages in the dev dependencies:
npm i -D webpack-merge webpack-node-externals

2. Create a new webpack folder in the project root directory, then move and rename
the webpack.config. js file to webpack/common. js. Some changes are
needed.

3. Remove the entry option from the configuration. This will be specified in the
specific extended configurations.

4. Update the output option to target the correct folder and to generate better
chunk names:

output: {
path: path.resolve(__dirname, '../dist'),
publicPath: '/dist/',
filename: '[name].[chunkhash].]js"',

iy

[339]

Project 5 - Online Shop and Scaling Up Chapter 7

Client configuration

Next to webpack/common. js, create anew client. js file that extends the base
configuration:

const
const
const
const

webpack = require ('webpack')

merge = require ('webpack-merge')

common = require('./common')

VueSSRClientPlugin = require ('vue-server-renderer/client-plugin')

module.exports = merge (common, {
entry: './src/entry-client',
plugins: [
new webpack.optimize.CommonsChunkPlugin ({

name: 'manifest',
minChunks: Infinity,

)y
// Generates the client manifest file
new VueSSRClientPlugin(),

1,
})

The VvuessSRClientPlugin will generate a vue-ssr-client-manifest. json file that we
will give to the renderer. This way, it will know more about the client. Also, it will
automatically inject the script tags and the critical CSS to the HTML.

The Critical CSS is the style of the components rendered by the server.
Those styles will be directly injected to the page HTML so that the browser
doesn't have to wait for the CSS to be loaded; it can display those
components sooner.

The CommonsChunkPlugin will put the webpack runtime code into a leading chunk so that
asynchronous chunks can be injected right after it. It also improves caching of the app and
vendor code.

Server configuration

Next to webpack/common. js, create a new server. js file that extends the base

configuration:
const merge = require ('webpack-merge')
const common = require('./common')
const nodeExternals = require ('webpack-node-externals')
const VueSSRServerPlugin = require('vue-server-renderer/server-plugin')

module.exports = merge (common, {

[340]

Project 5 - Online Shop and Scaling Up Chapter 7

entry: './src/entry-server',
target: 'node',
devtool: 'source-map',
output: {
libraryTarget: 'commonjs2',
}I
// Skip webpack processing on node_modules
externals: nodeExternals ({
// Force css files imported from no_modules
// to be processed by webpack
whitelist: /\.css$/,
)y
plugins: |
// Generates the server bundle file
new VueSSRServerPlugin(),
JI
})

Here, we change multiple options, such as the target and output.libraryTarget ones,
to adapt to the node.js environment.

Using the webpack-node-externals package, we tell webpack to ignore the modules
located in the node_modules folder (which means the dependencies). Since we are in
nodejs and not in a browser, we don't have to bundle all the dependencies into the bundle,
so this will improve the build times.

Finally, we use VueSSRServerPlugin to generate the server bundle file that will be used
by the renderer. It contains the compiled server-side code and a lot of other informations so
that the renderer can support source maps (with the source-map value of devtool), hot-

reloading, critical CSS injection, and other injections in conjunction with the client manifest
data.

Server-side setup

In development, we can't use webpack-dev-server directly anymore with SSR. Instead,
we will set up the express server with webpack. Download the server.dev. js file
(https://github.com/Akryum/packt-vue-project—-guide/blob/master/chapter7-
download/server.dev.js) and put it in the project root directory. This file exports a
setupDevServer function that we will use to run webpack and update the server.

[341]

https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js

Project 5 - Online Shop and Scaling Up Chapter 7

We will also need some packages for the development setup:

npm i -D memory-fs chokidar webpack-dev-middleware webpack-hot-middleware

We can create virtual file systems with memory-fs, watch files with chokidar, and enable
webpack Hot Module Replacement in an express server with the last two middleware.

Page template

Create anew index.template.html file alongside index.html and copy its contents.
Then, replace the body content with the special <!--vue-ssr-outlet--> comment:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Fashion Store</title>
</head>
<body>
<!——vue-ssr—-outlet——>
</body>
</htmlé>

This special comment will be replaced by the rendered markup on the server.

Express server

On the nodejs side, we will use express package to create our HTTP server. We will also
need the reify package so that we can require files that uses the import/export syntax
inside nodejs (which doesn't support it natively).

1. Install the new packages:

npm i -S express reify

[342]

Project 5 - Online Shop and Scaling Up Chapter 7

2. Download this incomplete server. js file (https://github.com/Akryum/packt—
vuefprojectfguide/blob/master/chapter7fdownload/server.dev.js)and put
it in the project root directory. It already creates an express server and configures
the necessary express routes.

For now, we will focus on the development part.

Creating and updating the renderer

To render our app, we will need a renderer created with the createBundleRenderer
function from the vue-server-renderer package.

A bundle renderer is quite different from a normal renderer. It uses a
server bundle file (that will be generated, thanks to our new webpack
configuration) with an optional client manifest that allows the renderer to
have more information about the code. This enables more features such as
source maps and hot-reloading.

In the server. js file, replace the // TODO development comment with this code:

const setupDevServer = require('./server.dev')
readyPromise = setupDevServer ({

server,

templatePath,

onUpdate: (bundle, options) => {
// Re—create the bundle renderer
renderer = createBundleRenderer (bundle, {
runInNewContext: false,
...options,
})
b
})

Thanks to the server.dev. js file, we can add support of webpack hot-reloading to our
express server. We also specify the path to the HTML page template, so we can reload it too
when changed.

When the setup triggers an update, we create or recreate the bundle renderer.

[343]

https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js
https://github.com/Akryum/packt-vue-project-guide/blob/master/chapter7-download/server.dev.js

Project 5 - Online Shop and Scaling Up Chapter 7

Rendering the Vue app

Next, we will need to implement the code that renders the app and send the HTML result
back to the client.

Replace the // TODO render comment with this:

const context = {
url: req.url,
// Languages sent by the browser
locale: reqg.acceptsLanguages (langs) || 'en',
}
renderer.renderToString (context, (err, html) => {
if (err) |
// Render Error Page or Redirect
res.status (500) .send ('500 | Internal Server Error')
console.error (' error during render : ${req.url}’)
console.error (err.stack)

}
res.send (html)

)

Thanks to the req. acceptsLanguages method from express, we can easily select the
preferred language of the user.

When performing the request, the web browser will send a list of
"accepted languages" by the user. This is generally the language set for
either their browser or OS.

We then use the renderToString method that will call the function we exported in the
entry-server. js file, wait for the returned Promise to complete and then render the app
into an HTML string. Finally, we send the result to the client (unless there is an error during
the render).

Running our SSR app

Now is the time to run the app. Change the dev script to run our express server instead of
webpack-dev-server:

"dev": "node server",

[344]

Project 5 - Online Shop and Scaling Up Chapter 7

Restart the script and refresh the app. To be sure that the SSR is working correctly, view the
source of the page:

<!DOCTYPE html>
<html lang="en">»
<head>
<meta charset="utf-8">
<title>Fashion Store</title>
<link rel="prelcoad" href="/dist/manifest.ckfddechabdcedcb56a9.ja" as="script"><link
rel="preload" href="/dist/vendor.abefll7e514f4972E80bd.js" as="script"><link rel="preload"
href="/dist/main.de%leledbld5804143cd.js" as="script"»<link rel="prefetch" href="/dist
f0.21bf77E5082022£8af70.ja"><link rel="prefetch" href="/dist
/2.508433d502229d905384.ja"><link rel="prefetch" href="/dist
£3.395a70£c7d3563e990b9.ja"><link rel="prefetch" href="/dist
/1.470b33Bce%0baldef3l9.ja"><link rel="stylesheet” href="/dist
foommon.dedleledb3ds5804143cd.cas"></head>
<body>
<div id="app" data-server-rendered="true"><header class="app-header" data-
v=40a9daB8b><div elass="content"” data-v-40a9daBb><div class="ztate" data-v-40a%daBb data-
v-40af%daBb><hl class="app-name” data-v-40a9daB8b><a href="/" class="link router-link-
exact-active router-link-active" data-v-40a9daBb>Fashion Store</a*</hl><butteon
clagg="base-button icon-buttcn" data-v-T6ed2ec36 data-v-40addaBb><i class="material-icons
icon" data-v-Thed2cib>search</i></——-->

The app is already rendered in HTML by the server.

Unnecessary fetch

Unfortunately, something is wrong with our app. The server sends the Vuex store data
alongside the HTML of the page, which means the app already has all the data it needs
when running for the first time, except that the requests to retrieve the stored items of the
item details and comments are still being made. You can see this because of the loading
animation that appears when you first load or when you refresh one of the corresponding

pages.

The solution to this is to prevent the components from fetching data if it is not necessary:

1. In the PageHome . vue component, we need to fetch the items only if we don't
have them already:
mounted () {
if (!'this.items.length) {
this.fetchItems ()

}I

[345]

Project 5 - Online Shop and Scaling Up Chapter 7

2. Inthe PageStoreItem.vue component, the details and comments should be
fetched only if we don't have the data:

fetchData () {
if ('this.details || this.details.id !== this.id) {
this.fetchStoreItemDetails ({
id: this.id,
)
}
}I

We no longer have the issue now.

To continue learn more about SSR, you can visit the official documentation at
https://ssr.vuejs.org/ Or use an easy-to-use framework called nuxtjs (https:/
/nuxtys.org/), which abstracts a lot of boilerplate away from you.

Production build

Our app is working great in development. Let's say we have finished it and we want to
deploy it to a real server.

Additional configuration

We need to add some configuration for the production build of the app to ensure that it is
optimized.

Extracting the style into CSS files

Until now, the style was added to the page via the JavaScript code. This is great in
development because it allows hot-reloading with webpack. However, in production, it is
recommended to extract it into separate CSS files.

1. Install the extract-text-webpack-plugin package in the dev dependencies:
npm i -D extract-text-webpack-plugin
2. In the webpack/common. js configuration file, add a new isProd variable:

const isProd = process.env.NODE_ENV === 'production'

[346]

https://ssr.vuejs.org/
https://ssr.vuejs.org/
https://ssr.vuejs.org/
https://ssr.vuejs.org/
https://ssr.vuejs.org/
https://ssr.vuejs.org/
https://ssr.vuejs.org/
https://ssr.vuejs.org/
https://ssr.vuejs.org/
https://ssr.vuejs.org/
https://nuxtjs.org/
https://nuxtjs.org/
https://nuxtjs.org/
https://nuxtjs.org/
https://nuxtjs.org/
https://nuxtjs.org/
https://nuxtjs.org/

Project 5 - Online Shop and Scaling Up Chapter 7

3. Modify the vue-loader rule to enable the CSS extraction if we are in production
and to ignore the whitespaces between HTML tags:

{
test: /\.vue$/,
loader: 'vue-loader',
options: {
extractCSS: isProd,

preserveWhitespace: false,
o
¥

4. Add the ExtractTextPlugin and the ModuleConcatenationPlugin to the
production-only plugins list at the bottom of the file:

if (isProd) {
module.exports.devtool = '#source-map'
module.exports.plugins = (module.exports.plugins ||
[1) .concat ([
//
new webpack.optimize.ModuleConcatenationPlugin(),
new ExtractTextPlugin ({
filename: 'common. |[chunkhash].css',

.

1)
} else {
//
}

ExtractTextPlugin will put the style into CSS files and the

ModuleConcatenationPlugin will optimize the compiled JavaScript code to be
faster.

Production express server

The last changes we need to make to our code is the bundle renderer creation in the express
server.

[347]

Project 5 - Online Shop and Scaling Up Chapter 7

In the server. js file, replace the // TODO production comment with this:

const template = fs.readFileSync (templatePath, 'utf-8')
const bundle = require('./dist/vue-ssr-server-bundle.json')
const clientManifest = require('./dist/vue-ssr-client-manifest.json')
renderer = createBundleRenderer (bundle, {
runInNewContext: false,
template,
clientManifest,

H)

We will read the HTML page template, the server bundle, and the client manifest. Then, we
create a new bundle renderer since we won't have hot-reloading in production.

New npm scripts

The compiled code will be output to a dist directory in the project root. Between each
build, we need to remove it so we are in a clean state. To do that in a cross-platform
manner, we will use the rimraf package that can recursively delete files and folders.

1. Install the rimraf package to the dev dependencies:
npm i -D rimraf

2. Add a build script for both the client and server bundles:

"build:client": "cross—env NODE_ENV=production webpack --progress
--hide-modules --config webpack/client.js",
"build:server": "cross—env NODE_ENV=production webpack --progress
--hide-modules --config webpack/server.js",

We set the NODE_ENV environment variable to 'production’ and run the
webpack command with the corresponding webpack configuration file.

3. Create a new build script that clears the dist folder and runs the two other
build:client and build:server scripts:

"build": "rimraf dist && npm run build:client && npm run
build:server",

[348]

Project 5 - Online Shop and Scaling Up Chapter 7

4. Add alast script called start that runs the express server in production mode:
"start": "cross—-env NODE_ENV=production node server",

5. You can now run the build; use the usual npm run command:
npm run build

The dist folder should now contain all the chunks generated by webpack, plus
the server bundle and client manifest json files:

JS JS JS

0.8e02835¢1635 0.8e02835c1635 1.e00f54e6186a4 1.e00f54e6186a4 2.012b7e77045f5
de7407a9.js de7407a9.js.map 9f58191.js 9f58191.js.map 65c544c.js

3]

2.012b7e77045f5 3.7c35ac4a96ff7 3.7c35ac4a96ff7 common.e18794f common.e18794f

JS

65c544c.js.map 4d43b2f.js 4d43b2f.js.map 783389..f591.css 783389....css.map
Js Js 'l
main.e18794f783 main.e18794f783 manifest. manifest. vue-ssr-client-

389629f591.js 389629...1.js.map 09703d...21e39.js 09703d...9.js.map manifest.json

<]

vue-ssr-server-
bundle.json

These are the files that need to be uploaded to your real nodejs server.

6. We can now start the express server:

npm start

[349]

Project 5 - Online Shop and Scaling Up Chapter 7

You should also upload the server. js, package. json, and package-
9 lock. json files to the real server. Don't forget to install the dependencies

with npm install.

Summary

In this chapter, we improved our development workflow by learning how to autoprefix our
CSS with PostCSS, lint our code for quality with ESLint, and unit test our components with
Jest. We went even further by adding localization with the vue-1i18n package and dynamic
imports, and by refactoring the project to enable server-side rendering while still taking
advantage of the awesome webpack features such as hot-reloading, code-splitting, and
optimizations.

In the last chapter, we will create a simple real-time app with the Meteor fullstack
framework and Vue.

[350]

Project 6 - Real-time
Dashboard with Meteor

In this final chapter, we will use Vue with an entirely different stack--Meteor!

We will discover this full-stack JavaScript framework and build a real-time dashboard
monitoring the production of some products. We will cover the following topics:

e Installing Meteor and setting up a project
e Storing data into a Meteor collection with a Meteor method
¢ Subscribing to the collection and using the data in our Vue components

Project 6 - Real-time Dashboard with Meteor Chapter 8

The app will have a main page with some indicators, such as:

Dashboard Measure

Production Dashboard
Average Errors
50 28%
28/10/2017 4 03:31:58 37
28/10/2017 a 03:31:58 3
28/10/2017 a 03:31:57 Error 49
28/10/2017 a 03:31:56 26
28/10/2017 a 03:31:56 Error 87
28/10/2017 a 03:31:56 47

It will also have another page with buttons to generate fake measures since we won't have
real sensors available.

Setting up the project

In this first part, we will cover Meteor and get a simple app up and running on this
platform.

[352]

Project 6 - Real-time Dashboard with Meteor Chapter 8

What is Meteor?

Meteor is a full-stack JavaScript framework for building web applications.
The mains elements of the Meteor stacks are as follows:

e Web client (can use any frontend library, such as React or Vue); it has a client-side
database called Minimongo

e Server based on nodejs; it supports the modern ES2015+ features, including the
import/export syntax

¢ Real-time database on the server using MongoDB

¢ Communication between clients and the server is abstracted; the client-side and
server-side databases can be easily synchronized in real-time

¢ Optional hybrid mobile app (Android and iOS), built in one command

¢ Integrated developer tools, such as a powerful command-line utility and an easy-
to-use build tool

e Meteor-specific packages (but you can also use npm packages)

As you can see, JavaScript is used everywhere. Meteor also encourages you to share code
between the client and the server.

Since Meteor manages the entire stack, it offers very powerful systems that are easy to use.
For example, the entire stack is fully reactive and real-time--if a client sends an update to
the server, all the other clients will receive the new data and their Ul will automatically be
up to date.

Meteor has its own build system called "IsoBuild" and doesn't use
Webpack. It focuses on ease of use (no configuration), but is, as a result,
also less flexible.

Installing Meteor

If you don't have Meteor on your system, you need to open the Installation Guide on the
official Meteor website at https://www.meteor.com/install. Follow the instructions there
for your OS to install Meteor.

[353]

https://www.meteor.com/install
https://www.meteor.com/install
https://www.meteor.com/install
https://www.meteor.com/install
https://www.meteor.com/install
https://www.meteor.com/install
https://www.meteor.com/install
https://www.meteor.com/install
https://www.meteor.com/install
https://www.meteor.com/install
https://www.meteor.com/install

Project 6 - Real-time Dashboard with Meteor Chapter 8

When you are done, you can check whether Meteor was correctly installed with the
following command:

meteor —--version

The current version of Meteor should be displayed.

Creating the project

Now that Meteor is installed, let's set up a new project:

1. Let's create our first Meteor project with the meteor create command:

meteor create —--bare <folder>
cd <folder>

The —-bare argument tells Meteor we want an empty project. By default, Meteor

will generate some boilerplate files we don't need, so this keeps us from having to
delete them.

2. Then, we need two Meteor-specific packages--one for compiling the Vue
components, and one for compiling Stylus inside those components. Install them

with the meteor add command:
meteor add akryum:vue—-component akryum:vue-stylus
3. We will also install the vue and vue-router package from npm:

meteor npm i -S vue vue-router

Note that we use the meteor npmcommand instead of just npm. This is to
have the same environment as Meteor (nodejs and npm versions).

4. To start our Meteor app in development mode, just run the meteor command:

meteor

[354]

Project 6 - Real-time Dashboard with Meteor Chapter 8

Meteor should start an HTTP proxy, a MongoDB, and the nodejs server:

It also shows the URL where the app is available; however, if you open it right
now, it will be blank.

Our first Vue Meteor app

In this section, we will display a simple Vue component in our app:

1. Create a new index.html file inside the project directory and tell Meteor we
want div in the page body with the app id:

<head>
<title>Production Dashboard</title>
</head>
<body>
<div id="app"></div>
</body>

This is not a real HTML file. It is a special format where we can inject
additional elements to the head or body section of the final HTML page.
Here, Meteor will add a tit1le into the head section and the <div> into
the body section.

2. Create a new client folder, new components subfolder, and a new App . vue
component with a simple template:

<!-- client/components/App.vue -->
<template>
<div id="#app">
<hl>Meteor</hl>
</div>
</template>

[355]

Project 6 - Real-time Dashboard with Meteor Chapter 8

3.I)OMHﬂoad(https://github.com/Akryum/packt—vue—project—guide/tree/
master/chapter8-full/client) this stylus file in the client folder and add it to
the main App . vue component:

<style lang="stylus" src="../style.styl" />

4. Create amain. js file in the client folder that starts the Vue application inside
the Meteor.startup hook:

import { Meteor } from 'meteor/meteor'
import Vue from 'vue'
import App from './components/App.vue'

Meteor.startup (() => {
new Vue ({
el: '#app',
...App,
)
)

In a Meteor app, it is recommended that you create the Vue app inside the
Meteor.startup hook to ensure that all the Meteor systems are ready
before starting the frontend.

This code will only be run on the client because it is located ina client
folder.

You should now have a simple app displayed in your browser. You can also open
the Vue devtools and check whether you have the App component present on the

page.

Routing

Let's add some routing to the app; we will have two pages--the dashboard with indicators
and a page with buttons to generate fake data:

1. In the client/components folder, create two new components--
ProductionGenerator.vue and ProductionDashboard.vue.

2. Next to the main. js file, create the router in a router. js file:

[356]

https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client
https://github.com/Akryum/packt-vue-project-guide/tree/master/chapter8-full/client

Project 6 - Real-time Dashboard with Meteor Chapter 8

import Vue from 'vue'
import VueRouter from 'vue-router'

import ProductionDashboard from
' ./components/ProductionDashboard.vue'
import ProductionGenerator from
'./components/ProductionGenerator.vue'

Vue.use (VueRouter)

const routes = [

{ path: '/', name: 'dashboard', component: ProductionDashboard
b
{ path: '/generate', name: 'generate',

component: ProductionGenerator },

const router = new VueRouter ({
mode: 'history',
routes,

1)

export default router

3. Then, import the router in the main. js file and inject it into the app, like we did
in Chapter 5, Project 3 - Support Center.
4. In the App . vue main component, add the navigation menu and the router view:

<nav>
<router-link :to="{ name: 'dashboard' }" exact>Dashboard
</router-link>
<router-link :to="{ name: 'generate' }">Measure</router-link>
</nav>

<router-view />

The basic structure of our app is now done:

Dashboard Measure

Production Dashboard

[357]

Project 6 - Real-time Dashboard with Meteor Chapter 8

Production measures

The first page we will make is the Measures page, where we will have two buttons:

¢ The first one will generate a fake production measure with current date and

random value
¢ The second one will also generate a measure, but with the error property set to
true

All these measures will be stored in a collection called "Measures'".

Meteor collections integration

A Meteor collection is a reactive list of objects, similar to a MongoDB collection (in fact, it
uses MongoDB under the hood).

We need to use a Vue plugin to integrate the Meteor collections into our Vue app in order to
update it automatically:

1. Add the vue-meteor-tracker npm package:
meteor npm i -S vue-meteor-tracker

2. Then, install the library into Vue:
import VueMeteorTracker from 'vue-meteor-tracker'
Vue.use (VueMeteorTracker)

3. Restart Meteor with the meteor command.

The app is now aware of the Meteor collection and we can use them in our
components, as we will do in a moment.

Setting up data

The next step is setting up the Meteor collection where we will store our measures data.

[358]

Project 6 - Real-time Dashboard with Meteor Chapter 8

Adding a collection

We will store our measures into a Measures Meteor collection. Create a new 1ib folder in
the project directory. All the code in this folder will be executed first, both on the client and
the server. Create a collections. js file, where we will declare our Measures collection:

import { Mongo } from 'meteor/mongo’

export const Measures = new Mongo.Collection ('measures')

Adding a Meteor method

A Meteor method is a special function that will be called both on the client and the server.
This is very useful for updating collection data and will improve the perceived speed of the
app--the client will execute on minimongo without waiting for the server to receive and
process it.

This technique is called "Optimistic Update" and is very effective when the
network quality is poor.

1. Next to the collections. js file in the 1ib folder, create a new methods. js
file. Then, add a measure.add method that inserts a new measure into the
Measures collection:

import { Meteor } from 'meteor/meteor'
import { Measures } from './collections'

Meteor .methods ({
'measure.add' (measure) {
Measures.insert ({
. .measure,
date: new Date(),
})
}!
})

We can now call this method with the Meteor.call function:

Meteor.call ('measure.add', someMeasure)

[3591]

Project 6 - Real-time Dashboard with Meteor Chapter 8

The method will be run on both the client (using the client-side database called minimongo)
and on the server. That way, the update will be instant for the client.

Simulating measures

Without further delay, let's build the simple component that will call this measure.add
Meteor method:

1. Add two buttons in the template of ProductionGenerator.vue:

<template>
<div class="production-generator">
<hl>Measure production</h1>

<section class="actions">
<button @click="generateMeasure (false)">Generate
Measure</button>
<button @click="generateMeasure (true) ">Generate
Error</button>

</section>

</div>
</template>

2. Then, in the component script, create the generateMeasure method that
generates some dummy data and then call the measure . add Meteor method:

<script>
import { Meteor } from 'meteor/meteor'

export default {
methods: {
generateMeasure (error) {
const value = Math.round (Math.random() * 100)
const measure = {
value,
error,
}
Meteor.call ('measure.add', measure)
}!
}!
}

</script>

[360]

Project 6 - Real-time Dashboard with Meteor Chapter 8

The component should look like this:

Dashboard Measure

Measure production

If you click on the buttons, nothing visible should happen.

Inspecting the data

There is an easy way to check whether our code works and to verify that you can add items
in the Measures collection. We can connect to the MongoDB database in a single command.

In another terminal, run the following command to connect to the app's database:

meteor mongo

Then, enter this MongoDB query to fetch the documents of the measures collection (the
argument used when creating the Measures Meteor collection):

db.measures.find ({})

If you clicked on the buttons, a list of measure documents should be displayed:

[361]

Project 6 - Real-time Dashboard with Meteor Chapter 8

This means that our Meteor method worked and objects were inserted in our MongoDB
database.

Dashboard and reporting

Now that our first page is done, we can continue with the real-time dashboard.

Progress bars library

To display some pretty indicators, let's install another Vue library that allows drawing
progress bars along SVG paths; that way, we can have semi-circular bars:

1. Add the vue-progress-path npm package to the project:
meteor npm i -S vue-progress-path

We need to tell the Vue compiler for Meteor not to process the files in
node_modules where the package is installed.

2. Create anew .vueignore file in the project root directory. This file works like a
.gitignore: each line is a rule to ignore some paths. If it ends with a slash /, it
will ignore only corresponding folders. So, the content of . vueignore should be
as follows:

node_modules/
3. Finally, install the vue-progress-path pluginin the client/main. js file:

import 'vue-progress—-path/dist/vue-progress-path.css'
import VueProgress from 'vue-progress-path'

Vue.use (VueProgress, {
defaultShape: 'semicircle',

})

Meteor publication

To synchronize data, the client must subscribe to a publication declared on the server. A
Meteor publication is a function that returns a Meteor collection query. It can take
arguments to filter the data that will be synchronized.

[362]

Project 6 - Real-time Dashboard with Meteor Chapter 8

For our app, we will only need a simple measures publication that sends all the documents
of the Measures collection:

1. This code should only be run on the server. So, create a new server in the
project folder and a new publications. js file inside that folder:

import { Meteor } from 'meteor/meteor'
import { Measures } from '../lib/collections'

Meteor.publish ('measures', function () {
return Measures.find ({})

})

This code will only run on the server because it is located in a folder called

server.

Creating the Dashboard component

We are ready to build our ProductionDashboard component. Thanks to the vue-
meteor-tracker we installed earlier, we have a new component definition option--
meteor. This is an object that describes the publications that need to be subscribed to and
the collection data that needs to be retrieved for that component.

1. Add the following script section with the meteor definition option:

<script>
export default {
meteor:
// Subscriptions and Collections queries here
}I
}

</script>

2. Inside the meteor option, subscribe to the measures publication with the
$subscribe object:

meteor: |
Ssubscribe: {
'measures': [],
}I
}I

[363 1]

Project 6 - Real-time Dashboard with Meteor Chapter 8

The empty array means we pass no parameter to the publication.

3. Retrieve the measures with a query on the Measures Meteor collection inside the
meteor option:

meteor: {

//

measures ()
return Measures.find({}, {
sort: { date: -1 1},
})
}I
}I

The second parameter of the £ind method is an options object very similar
to the MongoDB JavaScript APIL. Here, we are sorting the documents by
their date in descending order, thanks to the sort property of the options
object.

4. Finally, create the measures data property and initialize it to an empty array.

The script of the component should now look like this:

<script>
import { Measures } from '../../lib/collections'

export default {
data () {
return {
measures: [],
}
}I

meteor:
$subscribe: {
'measures': [],

b

measures () {
return Measures.find({}, {
sort: { date: -1 },
)

[364]

Project 6 - Real-time Dashboard with Meteor Chapter 8

b
b
}
</script>

In the browser devtools, you can now check whether the component has retrieved
the items from the collection.

Indicators

We will create a separate component for the dashboard indicators, as follows:

1. In the components folder, create a new ProductionIndicator.vue
component.
2. Declare a template that displays a progress bar, a title, and additional info text:

<template>
<div class="production-indicator">
<loading-progress :progress="value" />
<div class="title">{{ title }}</div>
<div class="info">{{ info }}</div>
</div>
</template>

3. Add the value, title, and info props:

<script>
export default {
props: {
value: {
type: Number,
required: true,
}I
title: String,
info: [String, Number],
}I
}

</script>

4. Back in our ProductionDashboard component, let's compute the average of the
values and the rate of errors:

computed: {
length () {
return this.measures.length

[365]

Project 6 - Real-time Dashboard with Meteor Chapter 8

by

average () {
if (!this.length) return O
let total = this.measures.reduce (
(total, measure) => total += measure.value,
0

)
return total / this.length

by

errorRate () {
if (!this.length) return O
let total = this.measures.reduce (
(total, measure) => total += measure.error ? 1 : O,
0

)
return total / this.length
b
b

In the preceding code snippet, we cached the length of the measures
array in a length computed property.

5. Add two indicators in the templates - one for the average value and one for the

error rate:

<template>
<div class="production-dashboard">

<hl1>Production Dashboard</hil>

<section class="indicators">

<ProductionIndicator
:value="average / 100"
title="Average"
:info="Math.round (average)"

/>

<ProductionIndicator
class="danger"
:value="errorRate"
title="Errors"
:info=""${Math.round(errorRate * 100) }%"

/>

[366]

Project 6 - Real-time Dashboard with Meteor Chapter 8

</section>
</div>
</template>

Don't forget to import ProductionIndicator into the component!

The indicators should look like this:

o

Average Errors
50 28%

Listing the measures

Finally, we will display a list of the measures below the indicators:

1. Add a simple list of <div> elements for each measure, displaying the date if it
has an error and the value:

<section class="1list">
<div
v—for="item of measures"
tkey="item._id"

<div class="date">{{ item.date.tolocaleString() }}</div>
<div class="error">{{ item.error ? 'Error' 'Yory</div>
<div class="value">{{ item.value }}</div>
</div>
</section>

[367]

Project 6 - Real-time Dashboard with Meteor Chapter 8

The app should now look as follows, with a navigation toolbar, two indicators,
and the measures list:

Dashboard Measure

Production Dashboard
Average Errors
50 28%
28/10/2017 2 03:31:58 37
28/10/2017 2 03:31:58 3
28/10/2017 a 03:31:57 Error 49
28/10/2017 a 03:31:56 26
28/10/2017 4 03:31:56 Error 87
28/10/2017 403:31:56 47

If you open the app in another window and put your windows side by side, you can see the
full-stack reactivity of Meteor in action. Open the dashboard in one window and the
generator page in the other window. Then, add fake measures and watch the data update
on the other window in real time.

If you want to learn more about Meteor, check out the official website (https://www.
meteor.com/developers) and the Vue integration repository (https://github.com/meteor-

vue/vue-meteor).

[368]

https://www.meteor.com/developers
https://www.meteor.com/developers
https://www.meteor.com/developers
https://www.meteor.com/developers
https://www.meteor.com/developers
https://www.meteor.com/developers
https://www.meteor.com/developers
https://www.meteor.com/developers
https://www.meteor.com/developers
https://www.meteor.com/developers
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor
https://github.com/meteor-vue/vue-meteor

Project 6 - Real-time Dashboard with Meteor Chapter 8

Summary

In this final chapter, we created a project using a new full-stack framework called Meteor.
We integrated Vue into the app and set up a Meteor reactive collection. Using a Meteor
method, we inserted documents into the collection and displayed in real-time the data in a
dashboard component.

This book may be over, but your journey using Vue is only beginning. We started with very
basic concepts around templates and reactive data, writing simple applications without any
build tools. Even with not much baggage, we were able to make a Mardown Notebook and
even a browser Card Game with animations. Then, we started using the full set of tools at
our disposal to make larger apps. The official command-line tool--vue-cli--was a great help
in scaffolding our projects. The Single-File-Components (. vue files) make the components
easy to maintain and evolve. We can even use preprocessing languages, such as stylus, very
easily. The vue-router official library is mandatory for managing multiple pages, like we
did in chapter 5, Project 3 - Support Center, with a nice user system and private routes.
Next, we went to a whole other level with advanced features, such as Google OAuth and
Google Maps, while architecturing our Geolocated Blog in a scalable and safe way using the
official Vuex library. Then, we improved the quality of our Online Shop code with ESLint
and wrote unit tests for our component. We even added localization and server-side
rendering to the app, so now it has a very professional feeling.

You can now practice on the projects we built by improving them, and you can even start
your own. Using Vue will improve your skills, but you can also attend events, chat online
with the community, get involved (https://github.com/vuejs/vue), or help others in
learning Vue. Sharing your knowledge will only increase your own, and you will become
better at what you do.

[369 1]

https://github.com/vuejs/vue
https://github.com/vuejs/vue
https://github.com/vuejs/vue
https://github.com/vuejs/vue
https://github.com/vuejs/vue
https://github.com/vuejs/vue
https://github.com/vuejs/vue
https://github.com/vuejs/vue
https://github.com/vuejs/vue
https://github.com/vuejs/vue
https://github.com/vuejs/vue

A

app

creating 9

Vue devtools 10

Vue.js devtools 12
asynchronous operations 247
awesome-vue

URL 149

B

blog posts, Geolocated Blog app
creating 268

BlogMap component changes
about 281
click handler 282, 283
ghost marker 283, 284

BlogMap component
mapping 265

BlogMap module
actions 265
mutations 264

BlogMap, connecting to store
about 261

BlogMap module and component 264

user position 266
Vuex modules 261, 262

C

card

child-to-parent communication, with custom

events 76, 78
displaying 72, 74

native events, listening on components 76

playing 87

Castle Duel Browser Game, scenery components

Index

animated clouds 110, 112
animation 112,114
banner bars 107, 108
castle banners 103
castles 102
food and health bubbles 105, 106
value, animating 108, 110
Castle Duel Browser Game
card effect, applying 120
card transition, ending 119
card, playing 116
card, removing from hand 118
cards, drawing 115, 116
cheating, avoiding 117
endGame function 124
gameplay 114
nextTurn function 121
overlay close actions 123
project, settingup 62
rules 58, 61
scenery components 101
skipTurn 121
code-splitting
about 326
with dynamic imports 327
commit 243
commit mutations 247
computed property 20

D

dashboard
about 362
component, creating 363
indicators 365
measures, listing 367
Meteor publication 362

progress bars library 362
data-binding 13
development environment
code editors 126
command-line tool 126
settingup 125
vue-cli, installing 126
development workflow
about 309
app, launching 311
browsers, targeting with browserslist 313
code quality, enhancing with ESLint 314
CSS, auto-prefixing with PostCSS 312
development API, generating 310
project, settingup 310
style, enhancing with ESLint 314
unit testing, with Jest 320
directives
used, for adding basic interactivity 13
DOM
basic interactivity, adding with directives 13, 14
templates, using 12
text, displaying 12

E

ESLint
code quality, enhancing 314
configuring 315
executing 316
inside Webpack 317
keywords 323
rules, customizing 316
style, enhancing 314

F

FAQ page
animation, loading 165
API, consuming 160
code, resusing with mixins 170
error management 175
fetch API, using 161, 165
fetch method 169
fetch, reusing with mixins 172
management, loading 174

plugin options 168

plugin, creating 167

remote data, fetching 172
server, setting up 160

Vue, extending with plugin 167

filters 54
Front-end JavaScript frameworks

fu

URL 7

nctional components

about 302, 303

creating 303, 304, 305, 306
store changes, for comments 302

G

Geolocated Blog app

about 231

basic structure, setting up 232

blog posts, adding 268

comments, adding 268

creating 233, 234

Google Auth and state management 232
Google Maps, embedding 258

routing 235, 237

state management, with Vuex 237

user system, adding 250

Google Maps
API key, obtaining 258

BlogMap, connecting to store 261
embedding 258

installing 258

library, installing 259

map, adding 260, 261

internationalization

J

about 326
Language page, modifying 331
user locale, loading automatically 329

Jest

Babel, configuration 321

configuring 320

[371]

keywords 323

snapshots 324
snapshots, updating 325
unit testing 320, 322
JSX
about 270,276
blog content structure 277, 279
no content 280

L

linting 314

markdown note app
about 17
attributes, binding with v-bind 34

button, used for calling method 33
click events, used for calling methods 33
conditional templates, with v-if 41, 43

current note 39
data, initializing 30
dynamic CSS classes 40
lifecycle hooks 29
list, displaying with v-for 36
method, used for creating note 32
method, using 27
multiple notes 31
note list 31
note toolbar 46
note, saving 23
note, selecting 38
notes, saving with deep option 43
preview pane 20
project, settingup 18
saved note, loading 28
selection, saving 45
status bar 52
text editor, adding 19
Vue instance, accessing 27
watchers 24

Marked
URL 20

Meteor
about 353
installing 353

project, creating 354

routing 356

URL 353, 368

Vue Meteor app 355
methods

using 27
mutation

about 243

strict mode 244, 245

N

namespaced module 262
note toolbar, markdown note app
favorite notes 49, 51
note, deleting 48
note, renaming 46
npm
URL 133

P

post details
about 295
PostContent component 296, 298
store changes, for post selection and sending
295,296
post, creating
about 280
BlogMap changes 281
draft store actions 280
post form 284, 285
request, creating 287, 288
post, selecting
about 295
functional components 302
location info 298
post details 295
scoped slots 298
posts store module 268, 269
posts, fetching
about 288
login action, implementing 294
logout action, implementing 293
markers, displaying 291, 292
store action 288

[372]

user logging in or out 292
posts-fetching action
creating 288, 290
dispatching 290, 291
preview pane
about 20
computed property 20
HTML, displaying 22
text interpolation, escaping 21
production measures
about 358
collection, adding 359
data, inspecting 361
data, settingup 358
Meteor collections integration 358
Meteor method, adding 359
simulating 360
progressive framework 6
project structure
about 147
active class 159
layouts, with router-view 150
navigation menu, creating 156
pages 149
router links 157
router modes 155
router object 154
routes, creating 152
routing 149, 150
settingup 148
Vue plugins 149
props
parent-to-child communication 70
using, in template 71

R

read-only 241
render functions
about 270
data objects 272, 274
dynamic templates 271, 272
used, for writing view in JavaScript 270, 271
Virtual DOM 275, 276

[373]

S

scoped slots

for passing data to parent 298, 300
implementing 300, 302

Search Engine Optimization (SEO) 332
Server-side Rendering (SSR)

about 332

app, executing 344

client entry file 335

Client, configuration 340

express server 342

npm scripts 348, 349

page template 342

production build 346

Production build, configuration adding 346
production express server 347
renderer, creating 343

renderer, updating 343

server entry 336

Server, configuration 340
server-side setup 341

state management 336

style, extracting into CSS files 346
Universal App Structure 333
unnecessary fetch, avoiding 345
Vue app, rendering 344

Vuex state, restoring on client 338
Webpack, configuration 339

Single-File Component (SFC)

about 134

component, using inside component 143, 145
JSX 138,139

less 142

preprocessors, adding 141
pug, using 137

sass 142

scoped styles 140

script 137

style 139

stylus 143

template 136

state management, Geolocated Blog app

actions, for store operations 247
getters, for computing and returning data 246,

247
helpers, mapping 248, 249, 250
mutations update 243
single source of truth 241
time-travel debugging 245, 246
Vuex Store 239, 240
with Vuex 237,238
status bar, markdown note app
date filter, using 53, 55
text stats 55
support tickets, login forms
fetch plugin, improving 194
form input component 182, 186
login component 187, 191
login operation 196
scoped elements, styling 192
sign up operation 195
smart form 179
v-model, customizing 187
support tickets
about 177
adding 204
attributes, binding 214
displaying 204
dynamic remote data 221
dynamic route 223, 226
dynamic routes, with parameters 220
form textarea 213
form, sending 212
guest routes 203
login forms 179
logout method 197
meta properties, routing 199
navigation guard, fixing 211
nested routes 208
not found page 227
plugin 178
private routes with navigation guards 198
route, redirecting 202
router navigation guards 200, 201
routing features 219
scrollBehavior function 228
session expiration 206
tickets list 204
transitions 228

user actions 215

user authentication 177

user authentication, initializing 203
user input, backingup 216, 219
user menu 197

user, storing in centralized state 178

T

text interpolation 12

U

user interface
animation, enhancing 85, 86
building 66
card list, animating 88
card, displaying 72, 74
card, playing 87
components, defining 68
components, using 68
content distribution, with slots 93, 95
CSS transitions 91
dynamic component 97, 99
game over overlay 96
gameplay data, adding to state 67
hand 78, 81
hand, animating with transitions 81, 84
key attribute 100
key special attribute 89
last play overlay 96
overlay animation 100
overlay background 101
overlays 92
parent-to-child communication, with Prop:
player turn overlay 95
props, using in template 71
top bar 67
user position, Google Maps
about 266
centering, on user 267
user system, Geolocated Blog app
Google OAuth, settingup 250, 251, 252
login button 252, 254
store, synchronizing with router 258
user, in store 254, 255

70

[374]

user, store updating manually 133

about 254 vue package, updating 134
fetch plugin, adapting 256 Vue instances 9

profile picture, implementing 257 Vue integration repository
router, adapting 255 URL 368

user session, checking on start 256, 257 Vue, features

\'

VNodes 275

Vue application
about 126
babel Vue preset 131
babel, configuring 131
building, for production 134
creating 128
dependencies, updating 132
executing 129
polyfills 132
project, scaffolding 127
render functions 130
updating automatically 133

almighty components 66
app state 64
template option 63

Vue.js devtools

references 10

Vue

about 6

compatibility requisites 8
project 7

setting up 8

URL 6, 7

Vuex modules

about 261, 262
global elements, accessing 264
namespaced module 262, 263

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with Vue

	Why another frontend framework?
	A trending project
	Compatibility requirements

	One-minute setup
	Creating an app
	Vue devtools

	Templates make your DOM dynamic
	Displaying text
	Adding basic interactivity with directives

	Summary

	Chapter 2: Project 1 - Markdown Notebook

	A basic note editor
	Setting up the project
	The note editor
	The preview pane
	Computed property
	Text interpolation escaping
	Displaying HTML

	Saving the note
	Watching changes
	Using a method
	Accessing the Vue instance

	Loading the saved note
	Lifecycle hooks
	Initializing directly in the data

	Multiple notes
	The note list
	A method to create a new note
	Button and click events with v-on
	Binding attributes with v-bind
	Displaying a list with v-for

	Selecting a note
	The current note
	Dynamic CSS classes
	Conditional templates with v-if
	Saving the notes with the deep option
	Saving the selection

	The note toolbar with extras inside
	Renaming the note
	Deleting the note
	Favorite notes

	The status bar
	Created date with a filter
	Text stats

	Summary

	Chapter 3: Project 2 - Castle Duel Browser Game

	Rules of the game
	Setting up the project
	The calm before the storm
	The template option
	The app state
	The almighty components

	Building the user interface
	Our first component - the top bar
	Adding some gameplay data to the state
	Defining and using the components
	Parent-to-child communication with Props
	Props in our template

	Displaying a card
	Listening to native events on components
	Child-to-parent communication with custom events

	The hand
	Animating the hand with transitions
	A prettier animation
	Playing a card
	Animating the card list
	The key special attribute
	The CSS transitions

	The overlays
	Content distribution with slots
	The 'player turn' overlay
	The 'last play' overlay
	The 'game over' overlay
	Dynamic component
	The overlay animation
	Key attribute

	The overlay background

	Game world and scenery
	The castles
	Castle banners
	Food and health bubbles
	Banner bars
	Animating a value

	The animated clouds
	The animation

	Gameplay
	Drawing cards
	The initial hand
	The hand

	Playing a card
	No cheating allowed
	Removing the card from the hand
	Waiting for the card transition to end
	Applying the card effect

	The next turn
	New turn
	Overlay close actions
	Game Over!

	Summary

	Chapter 4: Advanced Project Setup

	Setting up our development environment
	Installing vue-cli, the official command-line tool
	Code editors

	Our first full-blown Vue application
	Scaffolding the project
	Creating the app
	Running our application

	Render functions
	Configuring babel
	Babel Vue preset
	Polyfills

	Updating the dependencies
	Updating manually
	Updating automatically
	Updating Vue

	Building for production

	Single-File Components
	Template
	Using Pug

	Script
	JSX

	Style
	Scoped styles
	Adding preprocessors
	Sass
	Less
	Stylus

	Components inside components

	Summary

	Chapter 5: Project 3 - Support Center

	General app structure
	Setting up the project
	Routing and pages
	Vue plugins
	Our first routes with vue–router
	Layouts with router–view
	Creating routes
	The router object
	Router modes

	Creating a navigation menu
	Router links
	Active class

	FAQ - Consuming an API
	Server setup
	Using fetch
	Loading animation

	Extending Vue with our own plugin
	Creating a plugin
	Plugin options
	Fetch method

	Reusing code with mixins
	Fetching remote data
	Loading management
	Error management

	Support tickets
	User authentication
	Storing the user in a centralized state
	Another plugin

	Login forms
	Smart form
	Form input component
	Customizing v-model
	Login component
	Style children of scoped elements
	Improving our fetch plugin
	Sign up operation
	Login operation

	User menu
	Logout method

	Private routes with navigation guards
	Route meta properties
	Router navigation guards
	Redirecting to the wanted route

	Initializing user authentication
	Guest routes

	Displaying and adding tickets
	Tickets list
	Session expiration

	Nested routes
	Fixing our navigation guard

	Sending a form
	Form textarea
	Binding attributes
	User actions
	Backup user input

	Advanced routing features
	Dynamic routes with parameters
	Dynamic remote data
	The dynamic route

	Not found page
	Transitions
	Scrolling behavior

	Summary

	Chapter 6: Project 4 - Geolocated Blog

	Google Auth and state management
	Project setup
	Creating the app
	Some routing

	State management with Vuex
	Why do I need this?
	The Vuex Store
	The state is the source of truth
	Mutations update the state
	Strict mode
	Time-travel debugging

	Getters compute and return data
	Actions for store operations
	Mapping helpers

	User state
	Setting up Google OAuth
	Login button
	User in the store
	Adapting the router
	Adapting the fetch plugin
	Check the user session on start
	The profile picture

	Synchronizing the store and the router

	Embedding Google Maps
	Installation
	Getting the API key
	Installing the library

	Adding a map
	Connecting the BlogMap and the store
	Vuex modules
	Namespaced module
	Accessing global elements

	BlogMap module and component
	Mutations
	Actions
	Mapping in the component

	User position
	Centering on the user

	Blog posts and comments
	Posts store module
	Rendering functions and JSX
	Writing the view in JavaScript with render functions
	Dynamic templates
	Data objects
	Virtual DOM

	What is JSX?
	Blog content structure (in JSX!)
	No content

	Creating a post
	Draft store actions
	Blog Map changes
	Click handler
	Ghost marker

	Post form
	Making the request

	Fetching posts
	Store action
	Fetch posts action
	Action dispatching

	Displaying markers
	Login and logout
	Logout
	Login

	Selecting a post
	Post details
	Store changes for post selection and sending
	Post Content component

	Location info and scoped slots
	Scoped slots to pass data to the parent
	Implementing of the component

	Comments - functional components
	Store changes for comments
	Functional component

	Summary

	Chapter 7: Project 5 - Online Shop and Scaling Up

	Advanced development workflow
	Setting up the project
	Generating a quick development API
	Launching the app

	Auto-prefixing CSS with PostCSS
	Targeting specific browsers with browserslist

	Improving code quality and style with ESLint
	Configuring ESLint
	Customizing the rules

	Running ESLint
	ESLint inside Webpack

	Unit testing with Jest
	Configuring Jest
	Babel configuration for Jest

	Our first unit test
	ESLint and Jest globals
	Jest snapshots
	Updating the snapshots

	Complementary topics
	Internationalization and code-splitting
	Code-splitting with dynamic imports
	Automatically loading the user locale
	Changing Language page

	Server-side rendering
	Universal App Structure
	Client entry
	Server entry

	State management
	Restoring the Vuex state on the client

	Webpack configuration
	Client configuration
	Server configuration

	Server-side setup
	Page template

	Express server
	Creating and updating the renderer
	Rendering the Vue app

	Running our SSR app
	Unnecessary fetch

	Production build
	Additional configuration
	Extracting the style into CSS files
	Production express server

	New npm scripts

	Summary

	Chapter 8: Project 6 - Real-time Dashboard with Meteor

	Setting up the project
	What is Meteor?
	Installing Meteor
	Creating the project
	Our first Vue Meteor app
	Routing

	Production measures
	Meteor collections integration
	Setting up data
	Adding a collection
	Adding a Meteor method

	Simulating measures
	Inspecting the data

	Dashboard and reporting
	Progress bars library
	Meteor publication
	Creating the Dashboard component
	Indicators
	Listing the measures

	Summary

	Index

